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Executive Summary 
 

This project is motivated by the need to monitor and mitigate data quality issues in phasor 
measurement unit (PMU) data streams. As utilities and vendors develop more and more PMU–
based decision making tools, there is an urgent need to develop scalable, real-time methods to 
monitor and improve PMU data quality. Unlike traditional supervisory control and data acquisition 
(SCADA) measurements, PMU data has much higher sampling rate as well as accuracy 
requirement. Conventional bad data detection algorithms are therefore rendered ineffective.   
 
Built upon the recent success of dimensionality reduction of PMU data together with the vast 
experience gained in handling real-time data quality problems for real-time application 
development, the project team proposes a two-thrust approach to monitoring and correcting PMU 
data quality. First, we develop an online data-driven algorithm that is well suited bad data detection 
during both normal and eventful conditions. Second, we investigate the root causes of the data 
quality issues by different mechanisms such as GPS clock issues and communication network 
delays, and develop mitigation strategies for “fixing” or “filling” the problems utilizing advanced 
signal processing tools and dynamic state estimation methods.  
 
Part I: Online Detection of Low-Quality PMU Measurements: A Data-Driven Approach 
Part I of the report presents a data-driven approach for online detection of low-quality PMU 
measurements. It leverages the spatio-temporal similarities among multi-time-instant PMU data, 
and applies density-based local outlier detection technique to detect low-quality PMU 
measurements. The major advantages of the proposed approach are summarized as follows. (1) 
This is a purely data-driven approach, without requiring any prior knowledge on system topology 
or model parameters, which eliminates the potential misdetections caused by inaccurate system 
information; (2) the proposed approach can operate without any converged state estimation results 
and is suitable for filtering out gross measurement errors for advanced power system analytics; (3) 
the proposed approach has fast computational speed, which could be beneficial for real-time 
applications; and (4) the algorithm is able to perform detections under both normal and fault-on 
operating conditions. The proposed detection algorithm differentiates high-quality PMU data 
recorded during system physical disturbances (faults) from the low-quality data, which avoids 
potential false alarms caused by physical disturbances. The proposed detection algorithm has been 
implemented as a desktop application to analyze offline data.  
 
Part II: Multi-signal Analytical Guesstimation using Intelligent Collaboration (MAGIC) 
for synchrophasor data 
Part II of the report presents algorithms for reconstruction of missing PMU data by using available 
measurements from neighboring locations. As noted in Part I of the report, PMU data may be 
unavailable or unusable for a variety of reasons such as from measurement errors or loss of data 
during communication. Traditional methods such as those based on linear interpolation are 
inaccurate and they do not preserve the dynamic features of the system response if any of the data 
is lost during system events. This report introduces a data-driven approach that uses available 
measurements from nearby signals and from data available from recent past as cross-references to 
obtain accurate reconstructions of the missing data. a) The proposed technique provides highly 
accurate reconstructions in preserving system modal information and the results match well with 
those from actual values in test studies. b) The proposed method is computationally fast and can 
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be implemented in real-time for correcting data that could be used in subsequent PMU 
applications. c) The proposed method can reconstruct data over long time-intervals as long as 20 
seconds provided suitable measurements are available from its neighbors. d) The reconstructed 
signals can be used for improving the accuracy of PMU based applications such as dynamic state 
estimation, oscillation monitoring and model validation.  
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1. Introduction 

1.1 Background 

In recent years, there has been significant deployment of phasor measurement units (PMU) around 
the world. Compared with traditional metering units in supervisory control and data acquisition 
(SCADA) systems, PMUs provide measurements with much higher sampling rates. The high-
resolution PMU measurements contain rich information on system dynamics, which stimulates the 
development of advanced analytics, such as dynamic state estimation [1], PMU-based model 
validation [2], and wide-area control and protection [3,4]. However, as a large amount of data is 
streaming into the control center, the PMU data quality problem becomes one of the major 
challenges for system operators. Generally speaking, low-quality PMU data represents data that 
cannot accurately reflect the underlying system behavior. The inaccuracy can be caused by various 
problems such as sensing noises, data loss, and the global positioning system (GPS) time errors. 
As an example, the ratio of low-quality PMU data, reported by California Independent System 
Operator (ISO) in 2011, ranged from 10% to 17% [5]. In 2013, the ratio of low-quality PMU data 
in China was reported to range from 20% to 30% [6]. The online data quality monitoring of PMUs 
becomes a major barrier for any advanced PMU-based analytics. 

1.2 Literature Survey 

In order to improve data quality of PMU systems, various methods have been proposed. In [7], a 
PMU-based state estimator is introduced to detect phasor angle bias and current magnitude scaling 
problems. In [8], the Kalman filtering technique is applied to detect low-quality PMU data. Both 
state estimator and Kalman filter-based approaches require prior knowledge on system topology 
and model parameters for detecting low-quality data. Therefore, the detection accuracy of the 
above approaches may be affected when gross errors are presented in system topology or 
parameters. Furthermore, these methods cannot operate successfully when state estimation 
diverges because of gross measurement errors, system physical disturbances, or stressful operating 
conditions. In [9,10], several logic-based low-quality data detection schemes are presented. These 
approaches compare PMU data with certain thresholds, apply high-noise filters to raw PMU 
measurements, and perform cross-checking on PMU measurements obtained in nearby physical 
locations, in order to detect abnormal PMU measurements. However, these pre-defined logics may 
be rendered ineffective when large disturbances occur in the studied power grid. In [11], clustering 
algorithms are applied to extract information from power system time-varying data. These 
clustering techniques could potentially be applied to detect system anomalies such as low-quality 
PMU data or system physical disturbances. Reference [12,13] pioneered a purely data-driven 
method to improve PMU data quality. This method applies low-rank matrix factorization 
techniques to detect and repair low-quality PMU data. It has satisfactory performance under both 
normal and fault-on operating conditions. However, since the matrix factorization techniques bear 
high computational burden such as nonlinear optimizations, it becomes a challenge when applied 
for real-time applications. 
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1.3 Scope of Work 

In view of the current efforts on PMU data quality improvement, this report presents a data-driven 
approach for online detection of low-quality PMU measurements. It leverages the spatio-temporal 
similarities among multi-time-instant PMU data, and applies density-based local outlier detection 
technique to detect low-quality PMU measurements. The major advantages of the proposed 
approach are summarized as follows. (1) This is a purely data-driven approach, without requiring 
any prior knowledge on system topology or model parameters, which eliminates the potential 
misdetections caused by inaccurate system information; (2) the proposed approach can operate 
without any converged state estimation results and is suitable for filtering out gross measurement 
errors for advanced power system analytics; (3) the proposed approach has fast computational 
speed, which could be beneficial for real-time applications; and (4) the algorithm is able to perform 
detections under both normal and fault-on operating conditions. The proposed detection algorithm 
differentiates high-quality PMU data recorded during system physical disturbances (faults) from 
the low-quality data, which avoids potential false alarms caused by physical disturbances.  

1.4 Report Organization  

The rest of the report is organized as follows. Section 2 presents the problem formulation of the 
low-quality PMU data detection issue; Section 3 discusses the proposed data-driven approach for 
low-quality PMU data detection; Section 4 presents case study results to verify the proposed 
approach; Section 5 introduces a software tool developed using the proposed method; Section 6 
provides concluding remarks to this report.  
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2. Problem Formulation 

This section presents the key features differentiating low-quality PMU measurements from the 
high-quality ones. Based on these features, low-quality PMU measurements are formulated as 
spatio-temporal outliers among high-quality measurements in the power grid. Accordingly, the 
low-quality PMU data detection problem is formulated to be a spatio-temporal outlier detection 
problem. 

2.1 Problem Formulation 

Let 𝑚𝑚 × 𝑛𝑛 matrix 𝑀𝑀 denote a set of PMU measurements collected from n PMU channels of the 
same type (i.e., all of them are voltage/current/power channels), within 𝑚𝑚 time instants. This 
measurement matrix can be decomposed into the following two matrices: 

M = L + D                                                                     (2.1) 

where the kth column of matrix L represents the accurate measurements corresponding to the kth 
PMU channel in M, and D denotes the matrix containing inaccurate information caused by data 
quality problems. Each nonzero entry Dij represents a measurement error of the jth PMU channel 
at time instant i. Here, a PMU channel represents one of the following electrical quantities obtained 
by a PMU: voltage magnitude, voltage phasor angle, current magnitude, current phasor angle, real 
power, and reactive power. Therefore, Mij is a real number instead of a complex number. 
 
Definition 1. Mij is defined to be low-quality PMU data if its corresponding |Dij| > τ, where τ is a 
positive threshold to determine low-quality data. 
 
It has been shown in [12,13], when low-quality PMU data is presented in certain power system, 
the rank of matrix M would be higher than the rank of matrix L, due to the nonzero entries in matrix 
D. This phenomenon indicates the linear dependency (similarity) among PMU measurements 
would be weakened by data quality problems. 
 
In order to demonstrate the above property of low-quality PMU measurements, Figure 2.1 shows 
voltage magnitude curves measured by two PMUs with nearby physical locations. Both curves 
were recorded at the same time period, when a line-tripping fault was presented in the system 
(from 3s to 5s). The upper curve contains low-quality data at around 1s. By observing only the 
upper curve, it is difficult to confirm whether the data spikes are caused by physical disturbance 
or data-quality problem, since all the data spikes have outlier behavior compared with their 
temporal neighbors. However, by comparing multiple PMU curves obtained in different locations 
of the system, it would be possible to differentiate spikes caused by data-quality problems and 
those caused by disturbances, since spikes caused by data-quality problems are outliers compared 
with their spatial neighbors, while spikes caused by disturbances appear in curves recorded by 
multiple PMUs and therefore cannot be considered as outliers compared with their spatial 
neighbors. 
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Figure 2.1  Comparison between PMU curves with and without low-quality data. 

The above observations can be summarized as the following key features of low-quality 
and high-quality PMU data under normal/fault-on operating conditions: 
 
Feature 1. Both low-quality PMU measurements and fault-on PMU measurements exhibit weak 
temporal similarities with the measurements obtained at the neighboring time periods, while high-
quality PMU measurements obtained during normal operating conditions exhibit strong temporal 
similarities with the measurements obtained at the neighboring time periods. 
 
Feature 2. Low-quality PMU measurements exhibit weak spatial similarities with the 
measurements obtained by the neighboring PMUs at the same time period, while fault-on PMU 
measurements exhibit strong spatial similarities with the measurements obtained by the 
neighboring PMUs at the same time period. 
 
It should be noted that strong electrical connections among neighboring PMUs are required in 
order for the above features to be valid. Therefore, higher PMU measurement redundancy would 
lead to better accuracy in low-quality data detection, and lack of measurement redundancy could 
cause miss detections for the proposed algorithm. As more and more PMUs are being installed in 
power grids around the world, the measurement redundancy would be enhanced, and therefore the 
detection accuracy of the proposed algorithm would be improved. 

2.2 Formulation of Low-Quality PMU Data as Spatio-Temporal Outliers 

According to the discussions in the previous section, low-quality PMU measurements have weaker 
spatio-temporal similarities with their high-quality neighbors, under both normal and fault-on 
operating conditions. Therefore, these low-quality measurements can be formulated as spatio-
temporal outliers among all the PMU measurements in the system. With a proper definition of 
similarity metrics for PMU curves, the degree of similarity between two PMU curves can be 
quantified, and data-mining techniques can be applied to detect the spatio-temporal outliers whose 
degrees of similarity are significantly different from other PMU curves. 
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For a measurement matrix M obtained within a certain period of time, general steps to formulate 
the detection problem are described as follows: 
 
Step 1: Define a proper similarity metric (distance function) f(Mi,Mj) which quantifies the degree 

of similarity between the ith and jth column of $M$. 
 
Step 2: Map each column of M (a data curve obtained from certain PMU channel) to the space S 

where the distance function f(Mi,Mj) is defined. Each column of M can be represented as 
a point in S. 

 
Step 3: Examine the outlier behavior of the points in S, according to distance function f(Mi,Mj). 

Points lying far from the majority are more likely to be outliers with low-quality data. 
 

 
Figure 2.2  2D points representing PMU curves under normal/fault-on/low-quality conditions. (a) 
Overall figure with all the 2D points under normal/fault-on/low-quality conditions. (b) Zoomed-

in figure with all the 2D points under fault-on condition. (c) Zoomed-in figure with all the 2D 
points under normal condition and high-quality 2D points under low-quality condition. [16] 

Figure 2.2 demonstrates the above formulation through a simple example. Three 2×8 measurement 
matrices M(1), M(2), M(3) are sampled from the same set of PMU channels at three different time 
periods. Each matrix contains 8 PMU curves within 2 consecutive time instants. M(1) contains 6 
high-quality PMU curves and 2 low-quality PMU curves obtained under normal operating 
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condition. M(2) and M(3) contain 8 high-quality PMU curves obtained under fault-on and normal 
operating conditions, respectively. The Euclidean distance is used as the similarity metric (distance 
function), and each PMU curve in the three matrices is projected to the 2D Euclidean space shown 
in Figure 2.2. The x and y coordinates of each point are the data values at the first and second time 
instant of the corresponding PMU curve, respectively. 
 
The following observations can be drawn from Figure 2.2: (1) The cluster of fault-on PMU data 
(fault-on cluster) lies far from the clusters of high-quality PMU data under normal operating 
condition (normal-condition cluster), indicating weak temporal similarity between the two 
clusters; (2) all the points within the fault-on cluster lie close to each other, indicating strong 
spatial similarities among points within the fault-on cluster; and (3) the two points representing 
low-quality PMU curves lie far from the normal-condition cluster, as well as the majority of 
points in the low-quality cluster, indicating weak spatial and temporal similarities with their 
neighboring points. Therefore, the low-quality data points can be defined as spatio-temporal 
outliers under this formulation. 
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3. Online Detection of Low-Quality PMU Data 

Based on the previous discussion, we propose a density-based local outlier factor (LOF) analysis 
to detect low-quality PMU data. In [14], similar LOF-based techniques are introduced for the 
detection of high sensing noises and false data injections in PMU data. This section improves the 
similarity metrics for PMU curves, which lead to more robust performance on detecting various 
types of data quality problems, including not only sensing noises and false data injections, but also 
data spikes and un-updated data problems. 

3.1  Similarity Metrics Between PMU Curves 

In this subsection, two similarity metrics are proposed for detecting low-quality PMU data whose 
variance is significantly higher or lower than its spatio-temporal neighborhoods. 
 
Definition 2. Let M(k) denote the PMU measurement matrix obtained at the kth time period. The 
length of each time period equals to the length of the moving data window of the proposed 
algorithm. Let Mi(k) and Mj(k) denote the ith and jth columns of M(k). 
 
Let σi(k) denote the standard deviation of Mi(k), Let C denote the data set of all the PMU 
measurements identified to be clean (without data quality problems) by the proposed algorithm. 
The normalized standard deviation for PMU data obtained from the ith channel at the kth time period 
is defined as follows: 

𝜎𝜎𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑘𝑘) = 𝜎𝜎𝑖𝑖(𝑘𝑘)
𝛴𝛴𝑡𝑡=1
𝑡𝑡=𝑘𝑘−1𝜎𝜎𝑖𝑖(𝑡𝑡)𝛸𝛸𝐶𝐶�𝑀𝑀𝑖𝑖(𝑡𝑡)�

𝛴𝛴𝑡𝑡=1
𝑡𝑡=𝑘𝑘−1𝛸𝛸𝐶𝐶�𝑀𝑀𝑖𝑖(𝑡𝑡)�

                                                 (3.1) 

where 

𝛸𝛸𝐶𝐶�𝑀𝑀𝑖𝑖(𝑡𝑡)� = �
1        (𝑀𝑀𝑖𝑖(𝑡𝑡) ∈ 𝐶𝐶)
0        (𝑀𝑀𝑖𝑖(𝑡𝑡) ∉ 𝐶𝐶)                                                 (3.2) 

 
The normalized deviation 𝜎𝜎𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑘𝑘) represents the standard deviation of data curve obtained from 
the 𝑖𝑖𝑡𝑡ℎ PMU channel at the 𝑘𝑘𝑡𝑡ℎ time period, normalized by the average standard deviation of the 
historical clean measurements obtained from the same PMU channel. Considering 𝜎𝜎𝑖𝑖(𝑘𝑘) as a 
indicator of the strength of system dynamic response recorded by 𝑖𝑖𝑡𝑡ℎ PMU channel at the 𝑘𝑘𝑡𝑡ℎ time 
period, 𝜎𝜎𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑘𝑘)  is a normalized indicator which compares the current strength of system 
dynamic response with the average historical strength recorded by the same sensing channel. This 
normalization process removes the influence of PMU physical locations on the dynamic strength 
of the PMU curves. 

3.1.1 Similarity Metric for Low-Quality PMU Data with High Variance 

The similarity metric (distance function) 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) between 𝑀𝑀𝑖𝑖(𝑘𝑘) and 𝑀𝑀𝑗𝑗(𝑘𝑘) is defined as follows: 
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𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) = �𝜎𝜎𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜎𝜎𝑗𝑗𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�                                                  (3.3) 

3.1.2 Similarity Metric for Low-Quality PMU Data with Low Variance 

The similarity metric (distance function) 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) between 𝑀𝑀𝑖𝑖(𝑘𝑘) and 𝑀𝑀𝑗𝑗(𝑘𝑘) is defined as follows: 

𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝜎𝜎𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝜎𝜎𝑗𝑗
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁� , �

𝜎𝜎𝑗𝑗
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝜎𝜎𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁��                                           (3.4) 

The above two similarity metrics measure the difference between dynamic strength of data curves 
𝑀𝑀𝑖𝑖(𝑘𝑘) and 𝑀𝑀𝑗𝑗(𝑘𝑘). Since during the same time period 𝑘𝑘, clean PMU curves across the system tend 
to have similar dynamic strength (similarly low/high strength under normal/fault-on operating 
condition), 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) values tend to be small for clean measurements. However, the 
dynamic strength of low-quality PMU curves tend to be different from that of the clean curves, 
since dynamics of low-quality PMU curves are mainly driven by the dynamics of the data quality 
problems, rather than the true system dynamics. Therefore, 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) values tend to be 
large for low-quality PMU measurements. 
 
Although both similarity metrics could reflect the outlier behavior of both low-quality data with 
high variance (such as sensing noises, data spikes, etc.) and low variance (such as un-updated 
data), 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) tends to be more sensitive to high-variance data problems and 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) tends to be 
more sensitive to low-variance data problems. Under normal operating conditions, the 
performance of 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) in detecting low-variance data problems (such as un-updated data) could 
be unsatisfactory. This is because under normal operating conditions, the normalized standard 
deviations for clean measurements tend to be close to one, while the normalized standard 
deviations for low-variance data (such as un-updated data) tend to be close to zero. Therefore, 
under normal operating conditions, 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) between clean data and un-updated data would remain 
close to one, while 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) between clean data and un-updated data would be a very large number. 
However, under normal operating conditions, 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) between two clean data sets would be a 
small positive number (close to zero), and 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) between two clean data sets would lie around 
one. Therefore, the 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) value between un-updated data and clean data tends to be much larger 
than 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) value between two clean data sets, leading to a better detection performance. This 
performance difference is further demonstrated through case studies. 

3.2  Density-Based Outlier Detections for PMU Data 

Built upon the above similarity metrics, LOF analysis, which is a density-based outlier detection 
technique, is applied to solve the low-quality data detection problem. In this subsection, procedures 
for calculating LOFs are briefly discussed. The mathematical definition of ``density'' is presented 
below. Details of LOF analysis can be found in [15]. 
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3.2.1 Calculation of K-Distance(P) 

Let the measurement matrix M be a database consisting of PMU measurements. Let p, q, o be 
some objects in M, each object represents a column in M. Let k be a positive integer. The distance 
between p and q, denoted by d(p,q), is defined by 𝑓𝑓𝐻𝐻(𝑝𝑝, 𝑞𝑞) or 𝑓𝑓𝐿𝐿(𝑝𝑝, 𝑞𝑞). 
 
For any positive integer k, the k-distance of object p, denoted by k-distance(p), is defined as the 
distance d(p,o) between p and an object 𝑜𝑜 ∈ 𝑀𝑀 such that: 
 
a) for at least k objects 𝑜𝑜′ ∈ 𝑀𝑀\{𝑝𝑝} it holds that 𝑑𝑑(𝑝𝑝, 𝑜𝑜′) ≤ 𝑑𝑑(𝑝𝑝, 𝑜𝑜), and 
 
b) for at most k-1 objects 𝑜𝑜′ ∈ 𝑀𝑀\{𝑝𝑝} it holds that 𝑑𝑑(𝑝𝑝, 𝑜𝑜′) < 𝑑𝑑(𝑝𝑝, 𝑜𝑜). 
 
In the above definition, 𝑜𝑜′ ∈ 𝑀𝑀\{𝑝𝑝} denotes {𝑜𝑜′: 𝑜𝑜′ ∈ 𝑀𝑀, 𝑜𝑜′ ∉ {𝑝𝑝}}. 
 
Intuitively, k-distance(p) represents the distance between object p and the 𝑘𝑘𝑡𝑡ℎ nearest neighbor of 
p. The value of k-distance(p) provides a measure on the density around the object p. For the same 
number of k, smaller k-distance(p) indicates higher density around p. 

3.2.2 Identification of K-Distance Neighborhood of P 

Given k-distance(p), the k-distance neighborhood of p contains every object whose distance from 
p is not greater than the k-distance. This concept is defined in (3.5). 

𝑁𝑁𝑘𝑘−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝)(𝑝𝑝) = {𝑞𝑞 ∈ 𝑀𝑀\{𝑝𝑝}|𝑑𝑑(𝑝𝑝, 𝑞𝑞) ≤ 𝑘𝑘 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝)}                    (3.5) 

These objects q are called the k-nearest neighbors of p. 

3.2.3 Calculation of Reachability Distance of Object P from Object O 

The reachability distance of object p with respect to object o is defined in (3.6). 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘(𝑝𝑝, 𝑜𝑜) = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝑘𝑘 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜),𝑑𝑑(𝑝𝑝, 𝑜𝑜)}                        (3.6) 

Intuitively, if object p is far away from object o, then the reachability distance between p and o is 
simply their actual distance d(p,o). However, if they are “sufficiently” close to each other, the 
actual distance d(p,o) is replaced by the k-distance(o). The reason is that in doing so, the statistical 
fluctuations of d(p,o) for all the p's close to o can be significantly reduced. The strength of this 
smoothing effect can be controlled by the parameter k. The higher the value of k, the more similar 
the reachability distances for objects within the same neighborhood. 
 
Figure 3.1 illustrates the relationship among true distance 𝑑𝑑(𝑝𝑝3,𝑜𝑜) , k-distance(o), 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ −
𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑘𝑘(𝑝𝑝1,𝑜𝑜) , and𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ − 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑘𝑘(𝑝𝑝5,𝑜𝑜) . In this example, k=3, and true distance 𝑑𝑑(⋅)  is the 
Euclidean distance. According to the above definitions, k-distance(o) represents the distance 
between object o and the 𝑘𝑘𝑡𝑡ℎ  nearest neighbor of o. Therefore, when k=3, k-distance(o) =
𝑑𝑑(𝑝𝑝3, 𝑜𝑜) , where 𝑝𝑝3  is the third nearest neighbor of o. The radius of the circle in Figure 3.1 
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represents k-distance(o). Since true distance 𝑑𝑑(𝑝𝑝1,𝑜𝑜) <  k-distance(o), and true distance 
𝑑𝑑(𝑝𝑝5, 𝑜𝑜) > k-distance(o), the reachability distance between 𝑝𝑝1 and o is 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ − 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑘𝑘(𝑝𝑝1, 𝑜𝑜) =
𝑘𝑘 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜), while the reachability distance between 𝑝𝑝5 and o is 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ − 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑘𝑘(𝑝𝑝5,𝑜𝑜) =
𝑑𝑑(𝑝𝑝5, 𝑜𝑜) . These reachability distances 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ − 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑘𝑘(⋅) , developed through the comparison 
between the true distances 𝑑𝑑(⋅) and the k-distance(o), will then be used to formulate the local 
outlier factor. 

 
Figure 3.1  k-distance(o), reach-distk(p1,o), and reach-distk(p5,o) when k=3 [16] 

3.2.4 Calculation of Local Reachability Density of P 

The local reachability density of p is defined as 

𝑙𝑙𝑙𝑙𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝) = 1
Σ𝑜𝑜∈𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ−𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝,𝑜𝑜)

|𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝)|  
                                   (3.7) 

where 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝) = 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝)(𝑝𝑝), and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 is a positive integer. 
 
Intuitively, the local reachability density of an object p is the inverse of the average reachability 
distance based on the MinPts-nearest neighbors of p. 
 

3.2.5 Calculation of LOF of P 

The local outlier factor of p is defined as 

𝐿𝐿𝐿𝐿𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝) =
Σ𝑜𝑜∈𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝)�

𝑙𝑙𝑙𝑙𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑜𝑜)
𝑙𝑙𝑙𝑙𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝)�

|𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑝𝑝)|
                                    (3.8) 

The local outlier factor of object p captures the degree to which p is an local outlier. It is the 
average of the ratio of the local reachability density of p and those of p's MinPts-nearest neighbors. 
It is easy to see that the lower p's local reachability density is, and the higher the local reachability 
densities of p's MinPts-nearest neighbors are, the higher the LOF value of p is. 
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3.3 Robust Detection Criterion and Parameter Selections 

In order to improve the robustness of the proposed approach, the following detection criterion 
and parameter selection procedure are applied to the algorithm. 

3.3.1 Robust Detection Criterion 

Due to the propagation delay of electro-magnetic waves, PMUs installed at different locations of 
a large-scale power system may respond to physical disturbances at the time instants slightly 
asynchronous with each other. If a short moving data window is chosen for the algorithm, this 
slight time shift may cause false alarms under fault-on operating conditions. In order to avoid the 
false alarms without introducing too much computational burden, PMU measurements within the 
current moving data window are identified to contain low-quality data only if there are already l 
consecutive moving data windows prior to this current window, whose LOF values exceed the 
threshold value. l is an integer slightly less than the length of the moving data window. This 
criterion would introduce a small detection delay to the proposed algorithm. However, since the 
length of the moving data window is set to be short for the purpose of online application, the delay 
would be an insignificant value. 

3.3.2 Parameter Selections 

Three parameters need to be determined for the proposed algorithm: number of nearest neighbors 
(MinPts) of each object, length of the moving data window, and LOF thresholds for various 
similarity metrics. These parameters can be determined through off-line training using historical 
data. In order to reduce the detection delay, the length of moving data window should remain short. 
The MinPts value can be selected to be around half of the total number of PMU channels, by 
assuming the total number of low-quality curves at each time window should be less than the total 
number of high-quality PMU curves. 
 
According to the previous discussions, the overall flowchart of the proposed algorithm is shown 
in Figure 3.2. Key steps for implementing this low-quality data detection approach are as follows. 
 
Step 1: Create the current moving data window by reading in PMU measurements at the latest 

time instant. 
 
Step 2: Compute 𝑓𝑓𝐻𝐻(⋅) and 𝑓𝑓𝐿𝐿(⋅) values for each pair of PMU curves. 
 
Step 3: Compute LOF value of each PMU curve, based on 𝑓𝑓𝐻𝐻(⋅) and 𝑓𝑓𝐿𝐿(⋅). For each PMU curve, 

the LOF value can be calculated following the equations in the previous subsection. 
 
Step 4: If the LOF value corresponding to 𝑓𝑓𝐻𝐻(⋅)  or 𝑓𝑓𝐿𝐿(⋅) of the 𝑖𝑖𝑡𝑡ℎ  PMU curve exceeds the 

threshold, go to Step 5; otherwise, go to Step 7. 
 
Step 5: If the previous l consecutive LOF values corresponding to 𝑓𝑓𝐻𝐻(⋅) or 𝑓𝑓𝐿𝐿(⋅) of the 𝑖𝑖𝑡𝑡ℎ PMU 

curve exceed the threshold, go to Step 6; otherwise, go to Step 7. 
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Step 6: The 𝑖𝑖𝑡𝑡ℎ PMU curve is detected to contain low-quality data at current time window. 
 
Step 7: Move the data window to the next time instant, and go back to Step 1. 
 
Although the above calculation procedure involves looping process for the LOF calculation of 
each PMU curve, there is no time-consuming computation (such as matrix inversion, 
decomposition, etc.) involved in the above procedure. All the operations within the looping process 
request light computational efforts. The computational burden of the entire process is not 
significant. The computational performance of the proposed algorithm is demonstrated through 
the case studies. 

 
Figure 3.2  Overall flowchart of the proposed approach [16]. 
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4. Case Studies 

The proposed approach is tested using both synthetic and real-world PMU data. Low-quality 
measurements caused by various reasons are used to verify the effectiveness of the approach. In 
all the following test cases, a unique set of algorithm parameters are used: moving data window 
length = 20 data points; LOF threshold corresponding to 𝑓𝑓𝐻𝐻(⋅)  = 10; LOF threshold corresponding 
to 𝑓𝑓𝐿𝐿(⋅) = 100; Number of neighboring data for LOF algorithm = 0.5 × number of PMU curves. In 
order to demonstrate the proposed method is capable to detect low-quality data under fault-on 
operating conditions, a system physical disturbance (fault) is recorded by the PMU data in each 
test case. 

4.1 Case Study with Synthetic Data 

The synthetic PMU measurements are sampled from the simulation results of a standard IEEE-14 
test system, with a sampling rate of 50Hz. A three-phase line-to-ground fault is presented while 
running the simulation. In each test case, one type of low-quality data is randomly inserted into a 
subset of the test data. 

4.1.1 Synthetic Data with High Sensing Noise 

This test data set contains 14 synthetic voltage magnitude measurement curves, where 3 of them 
(No. 1, 5, 14) contain Gaussian noises lasting from 6s to 6.4s, with a signal-to-noise ratio (SNR) 
of 40dB. Figure 4.1 shows the 3 curves with data quality problems. 

 
Figure 4.1  Synthetic PMU measurements with high sensing noise [16]. 

Table 4.1 presents the detection results. It shows that all the 3 noisy data segments are successfully 
detected, without introducing any false alarm by the physical disturbance. A small detection delay 
(less than 0.38s) is introduced, due to the length of the moving data window. The average 
computing time for each moving data window is 0.0161s. Figure 4.2 presents the LOF values of 
all the PMU curves, when data quality problem or physical disturbance is presented. This 
comparison shows that the LOF values exceed the threshold when low-quality data is presented, 
while remain below the threshold when physical disturbance is presented. The results indicate the 
proposed method is able to detect low-quality PMU data while avoiding false alarms caused by 
system physical disturbances. 
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Table 4.1  Detection Results for Synthetic PMU Data with High Sensing Noise 1 

Index of PMU with High 
Noise 

Starting time of Noisy 
Segment 

Ending Time of Noisy 
Segment 

1 6.22s (LOF = 620.5) 6.78s (LOF = 31.9) 
5 6.34s (LOF = 429.1) 6.78s (LOF = 73.3) 
14 6.34s (LOF = 418.6) 6.76s (LOF = 48.2) 

 

 
Figure 4.2  LOF values of synthetic PMU channels when physical disturbance (right) or high 

sensing noise (left) is presented [16]. 

4.1.2 Synthetic Data with Spikes 

This test data set contains 47 synthetic real power measurement curves, where 4 of them (No. 3, 
6, 30, 45) contain data spikes lasting from 6.3s to 6.4s. These spikes can be caused by problems 
such as data loss or time skew of GPS clock [10]. Figure 4.3 shows the 4 curves with data quality 
problems. 

 
Figure 4.3  Synthetic PMU measurements with data spikes [16]. 

The detection results are shown in Table 4.2. All the 4 spikes are detected and no false alarm is 
introduced by physical disturbance. The detection delay introduced by the length of the moving 
data window is less than 0.36s. The average computing time for each moving data window is 
0.0627s. Figure 4.4 presents the LOF values of all the PMU curves, when data quality problem or 
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physical disturbance is presented. It is clear that low-quality data would cause the LOF values to 
exceed the threshold, while system physical disturbances would not cause a significant increment 
in LOF values. 

Table 4.2  Detection Results for Synthetic PMU Data with Spikes [16] 

Index of PMU with Data 
Spike 

Starting time of Spike 
Segment 

Ending Time of Spike 
Segment 

3 6.46s (LOF = 107.7) 6.76s (LOF = 85.2) 
6 6.46s (LOF = 113.9) 6.76s (LOF = 90.4) 
30 6.48s (LOF = 102.3) 6.76s (LOF = 71.5) 
45 6.44s (LOF = 270.3) 6.76s (LOF = 58.7) 

 

 
Figure 4.4  LOF values of synthetic PMU channels when physical disturbance (right) or data 

spike (left) is presented [16]. 

4.1.3 Synthetic Data with Un-Updated Data 

This test data set contains 14 synthetic voltage magnitude measurement curves, where 3 of them 
(No. 6, 12, 13) contain un-updated data lasting from 6s to 6.4s. Figure 4.5 shows the 3 curves with 
data quality problems. 

 
Figure 4.5  Synthetic PMU measurements with un-updated data [16]. 
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Table 4.3 presents the detection results. The 3 un-updated data segments are detected, while the 
presence of physical disturbance does not cause any false alarm. The detection delay introduced 
by the length of the moving data window is less than 0.36s, and the average computation time for 
each moving time window is 0.0128s. 

Table 4.3  Detection Results for Synthetic PMU Data with Un-updated Data [16] 

Index of PMU with  
Un-updated Data 

Starting time of  
Un-updated Segment 

Ending Time of  
Un-updated Segment 

6 6.36s (LOF = 3423.6) 6.40s (LOF = 3519.5) 
12 6.36s (LOF = 3423.6) 6.40s (LOF = 3519.5) 
13 6.36s (LOF = 3423.6) 6.40s (LOF = 3519.5) 

4.1.4 Synthetic Data with False Data Injection 

This test data set contains 47 synthetic real power measurement curves, where 4 of them (No. 15, 
21, 29, 42) contain false data injections lasting from 6s to 6.4s. Figure 4.6 shows the 4 curves with 
data quality problems. 

 
Figure 4.6  Synthetic PMU measurements with false data injection [16]. 

The detection results are shown in Table 4.4. Although physical disturbance is presented, all the 4 
false data injections are correctly detected and no false alarm is introduced. The detection delay 
caused by the length of the moving data window is less than 0.38s. The average computing time 
for each moving data window is 0.0627s. 
 
In all the above case studies using synthetic PMU measurements, the maximum detection delay is 
less than 0.4s, and the maximum computing time for each moving data window is less than 0.1s. 
It is summarized in [17] that the data latency requirements for online quasi-steady-state 
applications (state estimation, small signal stability analysis, oscillation analysis, voltage stability 
analysis, etc.) range from 1s to 5s. It is clear that both the detection delay and the computing time 
of the proposed method satisfy the latency requirements for PMU-based online quasi-steady-state 
applications. Therefore, the proposed method is suitable for online detection of low-quality PMU 
measurements, in order to improve the accuracy of these PMU-based applications. 
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Table 4.4  Detection Results for Synthetic PMU Data with Un-updated Data [16] 

Index of PMU with  
False Data Injection 

Starting time of  
Injected Data Segment 

Ending Time of  
Injected Data Segment 

15 6.32s (LOF = 39.7) 6.78s (LOF = 30.9) 
21 6.32s (LOF = 25.7) 6.78s (LOF = 19.9) 
29 6.32s (LOF = 14.1) 6.78s (LOF = 10.7) 
42 6.34s (LOF = 10.8) 6.72s (LOF = 10.9) 

4.2 Case Study with Real-World Data 

High-quality PMU measurements obtained from a real-world power grid are used to test the 
proposed approach. The sampling rate of the data is 100Hz. A line-tripping fault is recorded by 
the data. In each test case, one type of low-quality data is manually inserted to a randomly-chosen 
subset of the test data, so that the ground truth of the existence of low-quality data is known for 
sure. 

4.2.1 Real-World Data with High Sensing Noise 

This test data set contains 39 real-world voltage magnitude measurement curves, where 4 of them 
(No. 10, 15, 23, 29) contain Gaussian noises lasting from 1s to 1.2s, with a SNR of 40dB. The 
SNR of the original clean data set is tested to be well below 40dB. Figure 4.7 shows the 4 curves 
with data quality problems. 

 
Figure 4.7  Real-world PMU measurements with high sensing noise [16]. 

Table 4.5 presents the detection results. It shows that all the 4 noisy data segments are successfully 
detected, without introducing any false alarm by the physical disturbance. A small detection delay 
(less than 0.19s) is introduced, due to the length of the moving data window. The average 
computing time for each moving data window is 0.0376s. Figure 4.8 presents the LOF values of 
all the PMU curves, when data quality problem or physical disturbance is presented. This 
comparison shows that the LOF values exceed the threshold when low-quality data is presented, 
while remain below the threshold when physical disturbance is presented. The results indicate the 
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proposed method is able to detect low-quality PMU data while avoiding false alarms caused by 
physical disturbances. 

Table 4.5  Detection Results for Real-World PMU Data with High Sensing Noise [16] 

Index of PMU with  
High Noise 

Starting time of  
Noisy Segment 

Ending Time of  
Noisy Segment 

10 1.17s (LOF = 286.9) 1.39s (LOF = 30.0) 
15 1.16s (LOF = 577.8) 1.39s (LOF = 43.3) 
23 1.16s (LOF = 206.3) 1.39s (LOF = 12.3) 
29 1.16s (LOF = 328.2) 1.39s (LOF = 35.1) 

 

 
Figure 4.8  LOF values of real-world PMU channels when physical disturbance (right) or high 

sensing noise (left) is presented [16]. 

4.2.2 Real-World Data with Spikes 

This test data set contains 22 real-world real power measurement curves, where 4 of them (No. 3, 
6, 20, 21) contain data spikes at the time instant of 1.06s. In this test case, the length of each data 
spike is one sample. This test scenario is created in order to test the performance of the algorithm 
in detecting single data dropout. Figure 4.9 shows the 4 curves with data quality problems. 

 
Figure 4.9  Real-world PMU measurements with data spikes [16]. 
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The detection results are shown in Table 4.6. All the 4 spikes are detected and no false alarm is 
introduced by physical disturbance. The detection delay introduced by the length of the moving 
data window is less than 0.19s. The average computing time for each moving data window is 
0.0150s. Figure 4.10 presents the LOF values of all the PMU curves, when data quality problem 
or physical disturbance is presented. It is clear that low-quality data would cause the LOF values 
to exceed the threshold, while system physical disturbances would not cause a significant 
increment in LOF. 
 

Table 4.6  Detection Results for Real-World PMU Data with Spikes [16] 

Index of PMU with  
Data Spike 

Starting time of  
Spike Segment 

Ending Time of  
Spike Segment 

3 1.22s (LOF = 52.0) 1.25s (LOF = 28.2) 
6 1.22s (LOF = 124.8) 1.25s (LOF = 69.2) 
20 1.22s (LOF = 50.5) 1.25s (LOF = 27.2) 
21 1.22s (LOF = 71.7) 1.25s (LOF = 39.5) 

 

 
 
Figure 4.10  LOF values of real-world PMU channels when physical disturbance (right) or data 

spike (left) is presented [16]. 

4.2.3 Real-World Data with Un-Updated Data 

This test data set contains 13 real-world current magnitude measurement curves, where 4 of them 
(No. 1, 5, 7, 13) contain un-updated data lasting from 1s to 1.2s. Figure 4.11 shows the 4 curves 
with data quality problems. 
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Figure 4.11  Real-world PMU measurements with un-updated data [16]. 

Table 4.7 presents the detection results. The 4 un-updated data segments are detected, while the 
presence of physical disturbance does not cause any false alarm. The detection delay introduced 
by the length of the moving data window is less than 0.18s, and the average computation time for 
each moving data window is 0.0115s. 

Table 4.7  Detection Results for Real-World PMU Data with Un-updated Data [16] 

Index of PMU with  
Un-updated Data 

Starting time of  
Un-updated Segment 

Ending Time of  
Un-updated Segment 

1 1.18s (LOF = 4637.2) 1.20s (LOF = 4537.2) 
5 1.18s (LOF = 4637.2) 1.20s (LOF = 4537.2) 
7 1.17s (LOF = 3317.8) 1.20s (LOF = 4537.2) 
13 1.18s (LOF = 4637.2) 1.20s (LOF = 4537.2) 

 
Figure 4.12 presents the current magnitude data obtained from PMU channels No. 1 and No. 2, 
where PMU channel No. 1 contains un-updated data from 1s to 1.2s, and PMU channel No. 2 
contains clean data only. Figure 4.13 presents the normalized deviations of the two PMU channels, 
as the computation data window moves with time. It is clear that: 1) under normal operating 
conditions, the normalized deviations of clean data segments lie close to one; 2) under fault-on 
operating conditions, the normalized deviations of clean data segments increase significantly; 3) 
the normalized deviations of un-updated data segments decrease towards zero. 
 
Figure 4.14 presents the 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) values of PMU channels No. 1 and No. 2, as the 
computation data window moves with time. Figure 4.15 presents the LOF values of PMU channels 
No. 1 and No. 2, as the computation data window moves with time. It is clear from Figure 4.14 
and Figure 4.15 that 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) is more sensitive to the un-updated data than 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗), and therefore 
leads to a better detection performance for un-updated data. 



 

21 

 
Figure 4.12  Real-world current magnitude PMU measurements [16]. 

 
Figure 4.13  Normalized deviation of PMU channel No. 1 and No. 2 [16]. 

 
Figure 4.14  Similarity metric 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) (left) or 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) (right) between PMU channels No. 1 and 

No. 2 [16]. 



 

22 

 
Figure 4.15  LOF values when similarity metric 𝑓𝑓𝐻𝐻(𝑖𝑖, 𝑗𝑗) (left) or 𝑓𝑓𝐿𝐿(𝑖𝑖, 𝑗𝑗) (right) is applied [16]. 

4.2.4 Real-World Data with False Data Injection 

This test data set contains 39 real-world voltage magnitude measurement curves, where 4 of them 
(No. 2, 20, 27, 37) contain false data injections lasting from 1s to 1.2s. Figure 4.16 shows the 4 
curves with data quality problems. 

 
Figure 4.16  Real-world PMU measurements with false data injection [16]. 

The detection results are shown in Table 4.8. Although physical disturbance is presented, all the 4 
false data injections are correctly detected and no false alarm is introduced. The detection delay 
caused by the length of the moving data window is less than 0.19s. The average computing time 
for each moving data window is 0.0475s. 
 
In all the above case studies using real-world PMU measurements, the maximum detection delay 
is less than 0.2s, and the maximum computing time for each moving data window is less than 
0.05s. It is summarized in [17] that the data latency requirements for online quasi-steady-state 
applications (such as state estimation, small signal stability analysis, oscillation analysis, voltage 
stability analysis, etc.) range from 1s to 5s. It is clear that both the detection delay and the 
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computing time of the proposed method satisfy the latency requirements for PMU-based online 
quasi-steady-state applications. Therefore, the proposed method is suitable for online detection of 
low-quality PMU measurements, in order to improve the accuracy of these PMU-based 
applications. 

Table 4.8  Detection Results for Real-World PMU Data with False Data Injections [16] 

Index of PMU with  
False Data Injection 

Starting time of  
Injected Data Segment 

Ending Time of  
Injected Data Segment 

2 1.16s (LOF = 74.3) 1.39s (LOF = 71.2) 
20 1.16s (LOF = 117.7) 1.39s (LOF = 111.1) 
27 1.16s (LOF = 95.5) 1.39s (LOF = 91.6) 
37 1.16s (LOF = 383.4) 1.39s (LOF = 365.7) 

 
Since the detection delay of the proposed algorithm is mainly caused by the length of the moving 
data window, the delay could be estimated and removed when the occurrence time of the low-
quality data is reported. By doing this, the reported occurrence time of the low-quality data could 
be very close to its actual occurrence time. 
 
For power grids with a large number of PMUs, the computation speed of the proposed algorithm 
could be further improved by applying the detection algorithm in a decentralized framework. In 
large systems, multiple detection engines could be applied to process PMU measurements obtained 
from different physical locations or control areas (such as different states or different local control 
centers). PMUs lying far from each other could be grouped into different subgroups, and be 
processed in parallel by different detection engines. This decentralized framework could help 
reduce the number of PMU channels that need to be processed by each detection engine, and 
therefore improve the computation speed of each detection engine. Since this method does not 
require any system-wide information (such as system topology), it can be easily decentralized 
without spending extra effort on creating the reduced or equivalent system model. 
 
Meanwhile, parallel processing could also help improve the online computation performance of 
the proposed algorithm. Multiple processors could be applied at each detection engine, so that 
several consecutive moving data windows could be processed by different processors at the same 
time. This parallel technique could improve the overall computation speed when the proposed 
algorithm is applied to power systems with a significant number of PMUs. 
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5. Software Implementation 

5.1 Software Introduction 

The algorithm discussed above is implemented as an open-source desktop toolkit [18] that 
provides convenient user experience. The executable program and source codes of the toolkit are 
available for public download through GitHub. A graphical user interface (GUI) was designed 
for the toolkit, in order to improve its user-friendliness. Moreover, this software features cross-
platform capability by using the Qt application framework [19] as its development environment. 

5.2 Software User Interface  

The GUI is developed using Qt cross-platform software developer [20]. The Qt Software 
Development Kit (SDK) features a multi-platform compatibility which allows the software to be 
migrated to other hardware platforms with slight modification to the source codes. Figure 5.1 
presents a screenshot of the detection software: 

 

Figure 5.1 Screenshot of the detection software 
 
 
 
 
The GUI contains four sections that are labeled (1) – (4) in Fig. 5.1: 
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Section 1: User input that let the user to choose offline PMU measurement data file and adjust 
the value of user-input parameters used in the detection algorithm. 
 
Section 2: A plot of offline PMU measurement timeseries imported in section 1 by the, showing 
the voltage magnitude versus time curve for each PMU measurement channel. 
 
Section 3: Zoom-in plots of identified low-quality data segments. The user can use the scroller 
located to the upper right of the plot to switch between different segments. 
 
Section 4: A summary of the detection result, including:  

1. Calculation time of the algorithm indicating the efficiency 
2. Starting and ending time of each detected low-quality data segment 
3. Channel number of each detected low-quality data segment 

5.3 Potential Future Development 

This detection software has immense potential for further development. The proposed algorithm 
is designed for online detection, while the software is currently only compatible with offline 
PMU data. Collaboration with the industry could potentially lead to interfacing with online PMU 
data streams and provide real-time detection and analysis for power system operators. Also, the 
algorithm can be implemented in different platforms including embedded devices for various 
applications. 
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6.    Conclusions 

This report presents a framework that is possible for online detection and improvement of PMU 
data quality issues. The proposed approach formulates the low-quality PMU data as spatio-
temporal outliers among all the PMU measurements and performs detection through a density-
based local outlier detection algorithm. Similarity metrics are proposed to quantify the spatio-
temporal similarities among multi-time-instant PMU measurements. The proposed approach has 
satisfactory performance under both normal and fault-on operating conditions. It requires no prior 
information on system modeling and topology. The computation speed of the proposed algorithm 
is suitable for online applications. Synthetic and real-world PMU measurements are used to verify 
the effectiveness of the proposed approach. This framework, if successful, could potentially boost 
up system operators' confidence of PMU-based analytics in modern power systems. 
 
Built upon this work, future research could focus on developing similarity metrics with more 
sensitive and robust performance, identifying root causes of the low-quality problems, and 
correcting the low-quality PMU data. 
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1. Introduction

1.1 Background 

With the proliferation of phasor measurement unit (PMU) devices across power system, there is 
growing use of PMU data in applications. However, PMU data can get lost as it flows through the 
data process path from the point of measurement to the point of use. The efforts to reconstruct the 
missing synchrophasor data have been challenging. The traditional methods such as linear 
interpolation are inaccurate and cannot preserve the ring-down features of the system responses, 
when the data is lost during system events. This report introduces a data-driven approach that uses 
available measurements from nearby signals as cross-references to obtain accurate reconstructions 
of the missing data. The problem is formulated into a matrix approximation problem, where a 
collaborative filtering algorithm is applied. To adapt the algorithm into the power system context, 
the report designs methods for normalizing scales, identifying neighbors and screening reasonable 
reconstruction results. The methodology has been tested using field data obtained from PMUs 
installed in the Western and Eastern Interconnections. The results indicate that, with well-tuned 
hyper-parameters, the proposed technique provides highly accurate reconstructions in preserving 
system modal information and the results match well with those from actual values. 

1.2 Literature Survey 

With the proliferation of phasor measurement unit (PMU) devices across the power system, there 
is growing use of PMU data in applications that enhance grid operations [1], analytics [2], [3], and 
strategic planning [4]. Some of these applications are critical and require accurate, reliable data, 
delivered on time [5]. However, data losses often happen as data flows up from measurement at 
the PMU to the application. To fit the data for using in applications, effort has been made to 
reconstruct missing PMU data [6]. 

In industry, linear interpolation is commonly used to patch data gaps [8], which can potentially 
lose valuable modal information especially when an event or oscillation occurs. 

The model-based method is another traditional solution. State estimators generate pseudo-
measurements from historical state estimates based on complicated modeling of power system 
dynamics [9], [10]. The accuracy of pseudo-measurements largely depends on the correct 
modeling of system dynamics. 

A denser coverage of PMUs makes model-free methods possible [11]. Because PMU data are 
sampled at synchronized instants, and measurements of nearby PMUs are correlated through 
power system topology, PMU data exhibit low-dimensional structure despite the high-
dimensionality of raw data. Specifically, the matrix that contains measurements of nearby PMUs 
at multiple time instants is approximately low-rank [12], [13]. Therefore, reconstructing missing 
PMU data can be formulated as a low-rank matrix completion problem. The existing matrix 
completion algorithms, such as singular value thresholding (SVT) [14], and information cascading 
matrix completion (ICMC) [15] have one fundamental assumption, that is, each missing entry 
happens independently of others. The independence assumption does not adequately describe the 
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PMU data correlations. To characterize temporal and spatial (signal) correlations, [16] assumes 
the independence of PMU signals and independence of different time instants respectively. 

Instead of separating temporal and spatial correlations, available measurements from recent history 
and any available measurements at the present time from nearby PMU signals can be used as cross-
references to reconstruct missing data. In light of this idea, the data itself is represented as a 
measurement matrix, giving for each signal-time pair, a value that represents the measurement of 
that signal at that time. Some entries of the matrix are missing due to data losses. The goal is to 
fill in the blanks of the measurement matrix. The difference between cross-reference approach and 
traditional matrix completion is a measure of involved PMU signals. Cross-reference approach 
only uses close PMU signals, while matrix completion uses available PMUs signals over distinct 
control regions. 

1.3 Scope of the Project 

We formulate the domain problem of missing PMU data reconstruction as that of collaborative 
filtering widely used in recommendation system in the social network [17]. Collaborative filtering 
algorithm predicts missing rating data in user-item matrix according to similar users to make 
targeted recommendations to interested potential customers. We combine two primary approaches 
of collaborative filtering (i.e., latent-space-based and neighborhood-based [18]) to solve the PMU 
data reconstruction problem. 

1.4 Organization of the Report 

The rest of the report is organized as follows: Section II is the problem formulation and a brief 
introduction of the latent-space-based collaborative filtering algorithm. Section III implements 
collaborative filtering into the environment of PMU data reconstruction with three strategies that 
have significant impacts on the accuracy of results: neighborhood selection, normalization, and 
global optimization. Section IV tunes the hyper-parameters and configure the algorithms in order 
to enhance its performance. Section V describes experiments that show the effectiveness of the 
proposed technique. Section VI concludes with some future directions. 
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2. Collaborative Filtering Algorithm

2.1 Problem Formulation 

Suppose we are given measurements for 𝑠𝑠  signals and 𝑡𝑡  time instants. Here 𝑠𝑠  designates the 
number of signals and 𝑡𝑡 designates the number of time instants. Formally, let 𝑀𝑀 = �𝑚𝑚𝑖𝑖𝑖𝑖�𝑠𝑠×𝑡𝑡

 be the
measurement matrix, where each element 𝑚𝑚𝑖𝑖𝑖𝑖  represents the measurement of signal 𝑖𝑖 at time 𝑗𝑗 
with its value either being a real number or a missing value [19]. The (𝑖𝑖, 𝑗𝑗) pairs for which 𝑚𝑚𝑖𝑖𝑖𝑖 is 
available are stored in the subset A = �(i, j)�mij� 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎} . Likewise, 𝑁𝑁 𝐴𝐴  represents the 
subset of measurements that are not available for some reasons. In this setup, collaborative filtering 
is designed to estimate missing values in 𝑀𝑀 based on the available values. 

2.2 Latent Factor Model 

Latent factor models predict the blank entries in the measurement matrix by conjecturing that the 
matrix is actually the product of two long, thin matrices. If we start with the measurement matrix 
𝑀𝑀, with 𝑠𝑠 rows and 𝑡𝑡 columns (i.e., there are 𝑠𝑠 signals and 𝑡𝑡 time instants), then we want to find a 
matrix 𝑈𝑈 with 𝑠𝑠 rows and 𝑑𝑑 columns and a matrix 𝑉𝑉 with 𝑑𝑑 rows and 𝑡𝑡 columns, such that the 
product 𝑈𝑈𝑈𝑈 closely approximates 𝑀𝑀 in those entries where 𝑀𝑀 is non-blank. If so, we have mapped 
both signals and time instants to a joint latent factor space of dimensionality 𝑑𝑑. We can then use 
the entries in 𝑈𝑈𝑈𝑈 to estimate the corresponding blank entries in measurement matrix 𝑀𝑀 [20]. This 
process is called UV-decomposition of 𝑀𝑀. In this way, the incomplete measurement matrix 𝑀𝑀 is 
approximated by the product of two low dimensional factor space 𝑈𝑈 and 𝑉𝑉. A visualization of the 
approximation is given in Fig. 1. 

Figure 1. Visualization of matrix-factorization-based collaborative filtering. 

More specifically, let 𝑈𝑈 = [𝑢𝑢𝑗𝑗] be the PMU signals factor matrix, where the factor vectors 𝑢𝑢𝑖𝑖 = ⊆
 ℝ𝑑𝑑  for all 𝑖𝑖 = 1, … , 𝑠𝑠, and let 𝑉𝑉 = [𝑣𝑣𝑗𝑗] be the time factor matrix, where the factor vectors 𝑣𝑣𝑗𝑗 = ⊆
ℝ𝑑𝑑  for all 𝑗𝑗 = 1, … , 𝑡𝑡 . The resulting dot product or inner product, < 𝑢𝑢𝑖𝑖, 𝑣𝑣𝑗𝑗 >,  captures the 
interaction between signal 𝑖𝑖 and time 𝑗𝑗, i.e., the measurement of the signal at certain time. 

If the measurements were fully observable and 𝑑𝑑 was sufficiently large, we could expect that each 
entry of 𝑀𝑀 is the inner product of corresponding signal and time factor vectors: 𝑚𝑚𝑖𝑖𝑖𝑖 = < 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 >,
∀ 𝑖𝑖, 𝑗𝑗. In practice, however, 𝑀𝑀 has unavailable entries, the approximated 𝑈𝑈 and 𝑉𝑉 might not give 
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the perfect inner product < 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 > that is exactly the same with observed values of 𝑚𝑚𝑖𝑖𝑖𝑖 . We need 
to minimize the differences between the approximated predictions 𝑝𝑝𝑖𝑖𝑖𝑖 = < 𝑢𝑢𝑖𝑖, 𝑣𝑣𝑗𝑗 > and observed 
values  𝑚𝑚𝑖𝑖𝑖𝑖 to obtain 𝑢𝑢 and 𝑣𝑣. 
 
2.3 Objective Function / Loss Function 
 
A loss function evaluates how close the predictions are to the observed values, that is, how close 
the entries of product 𝑈𝑈𝑈𝑈 is to the non-blank entries of 𝑀𝑀. A typical choice is the root-mean-square 
error (RMSE): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑛𝑛𝐴𝐴
��𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖�

2

(𝑖𝑖,𝑗𝑗)

 (1) 

 
where 𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑚𝑚𝑖𝑖𝑖𝑖 are predicted and observed values of signal 𝑖𝑖 at time 𝑗𝑗 respectively. Here, we 
use 𝑝𝑝𝑖𝑖𝑖𝑖  for the element in row 𝑖𝑖 and column 𝑗𝑗 of the product matrix 𝑃𝑃 = 𝑈𝑈𝑈𝑈. 𝑛𝑛𝐴𝐴 is the number of 
available (non-blank) entries in 𝑀𝑀. For training 𝑈𝑈 and 𝑉𝑉 purpose, we only calculate all available 
(non-blank) entries in 𝑀𝑀. For evaluation purpose, we calculate all blank entries in 𝑀𝑀. 
 
Since RMSE function measures the quality of the prediction, such a quality function is often 
referred to as the objective function. Minimizing the sum of the squares is equivalent to minimizing 
the square root of the average square, so we generally omit the average and square root steps. The 
objective/loss function minimized for training 𝑢𝑢 and 𝑣𝑣 is: 
 

�𝑢𝑢𝑖𝑖, 𝑣𝑣𝑗𝑗� = arg  𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑖𝑖,𝑣𝑣𝑗𝑗

� �𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖�
2

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

(2) 

 
where 𝐴𝐴 is the set of available (non-blank) entries. 
 
2.4 Regularization 
 
One problem that often arises when performing a collaborative filtering algorithm is that although 
the RMSE may be small on the given training data, it does not do well predicting unavailable data. 
The reason is that the parameters approximate the available data so well that they do not reflect 
well the underlying process. To avoid overfitting, a common method is to append a regularization 
term to the objective function: 

�𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗� = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢𝑖𝑖,𝑣𝑣𝑗𝑗

� �𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖𝑖𝑖�
2

(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

+ 𝜆𝜆�∥ 𝑢𝑢𝑖𝑖 ∥2 + ∥ 𝑣𝑣𝑗𝑗 ∥2� (3) 

 
where 𝜆𝜆 is the regularization parameter. Suitable selection of 𝜆𝜆 will be discussed in details in 
Section IV. To learn the model parameters 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗  we minimize the regularized squared error. 
 
2.5 Minimizing an Arbitrary Element in 𝑼𝑼 and 𝑽𝑽 
 
Minimizing the regularized squared error (3) is a least square problem. In this section, we develop 
the general formula for picking the minimum value for a single element in the matrix 𝑈𝑈 or 𝑉𝑉. 
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Suppose we want to vary the blank entry 𝑢𝑢𝑖𝑖𝑖𝑖 and find the value of this element that minimizes the 
RMSE between 𝑀𝑀 and 𝑈𝑈𝑈𝑈. Note that 𝑢𝑢𝑖𝑖𝑖𝑖 affects only the elements in row 𝑖𝑖 of the product 𝑃𝑃 =
𝑈𝑈𝑈𝑈. Thus, we need only concern with the elements: 
 

𝑝𝑝𝑖𝑖ℎ =  �𝑢𝑢𝑖𝑖𝑖𝑖𝑣𝑣𝑐𝑐ℎ

𝑑𝑑

𝑐𝑐=1

+  �𝑢𝑢𝑖𝑖𝑖𝑖𝑣𝑣𝑐𝑐ℎ + �𝑢𝑢𝑖𝑖𝑖𝑖 + ∆𝑢𝑢𝑖𝑖𝑖𝑖�𝑣𝑣𝑗𝑗ℎ
𝑐𝑐≠𝑗𝑗

(4) 

 
for all values of ℎ such that 𝑚𝑚𝑖𝑖𝑖𝑖 is non-blank. In the expression above, we have replaced 𝑢𝑢𝑖𝑖𝑖𝑖, the 
element we wish to vary, with the current value of 𝑢𝑢𝑖𝑖𝑖𝑖 and an adjustment ∆𝑢𝑢𝑖𝑖𝑖𝑖, and we use the 
convention: 
 
∑𝑐𝑐≠𝑗𝑗 is shorthand for the sum for those column 𝑐𝑐 = 1, 2, … ,𝑑𝑑, except for 𝑐𝑐 = 𝑗𝑗. 
If 𝑚𝑚𝑖𝑖ℎ is a non-blank entry of the matrix 𝑀𝑀, then the contribution of this element to the sum of the 
squared errors is: 
 

(𝑚𝑚𝑖𝑖ℎ − 𝑝𝑝𝑖𝑖ℎ)2 = �𝑚𝑚𝑖𝑖ℎ −  �𝑢𝑢𝑖𝑖𝑖𝑖𝑣𝑣𝑐𝑐ℎ − �𝑢𝑢𝑖𝑖𝑖𝑖 + ∆𝑢𝑢𝑖𝑖𝑖𝑖�𝑣𝑣𝑗𝑗ℎ
𝑐𝑐≠𝑗𝑗

�

2

(5) 

 
We shall use another convention: 
∑ℎ is shorthand for the sum over all ℎ such that 𝑚𝑚𝑖𝑖ℎ is non-blank. 
 
Then we can write the sum of the squared errors that are affected by the value of ∆𝑢𝑢𝑖𝑖𝑖𝑖 as:  
 

�� 𝑚𝑚𝑖𝑖ℎ −  �𝑢𝑢𝑖𝑖𝑖𝑖𝑣𝑣𝑐𝑐ℎ − �𝑢𝑢𝑖𝑖𝑖𝑖 + ∆𝑢𝑢𝑖𝑖𝑖𝑖�𝑣𝑣𝑗𝑗ℎ
𝑐𝑐≠𝑗𝑗

 �

2

ℎ

(6) 

 
We can find the value of ∆𝑢𝑢𝑖𝑖𝑖𝑖 that minimizes the squared error by setting the gradient with respect 
to ∆𝑢𝑢𝑖𝑖𝑖𝑖 equal to zero: 
 

�𝑣𝑣𝑗𝑗ℎ �𝑚𝑚𝑖𝑖ℎ −  �𝑢𝑢𝑖𝑖𝑖𝑖𝑣𝑣𝑐𝑐ℎ − ∆𝑢𝑢𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗ℎ  
𝑑𝑑

𝑐𝑐=1

� = 0
ℎ

(7) 

 
We solve the above equation for ∆𝑢𝑢𝑖𝑖𝑖𝑖, and get: 
 

∆𝑢𝑢𝑖𝑖𝑖𝑖 =  
∑ℎ𝑣𝑣𝑗𝑗ℎ�𝑚𝑚𝑖𝑖ℎ −  ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖ℎ𝑑𝑑

𝑐𝑐=1 �
∑ℎ 𝑣𝑣𝑗𝑗ℎ2

=  
∑ℎ 𝑣𝑣𝑗𝑗ℎ𝑒𝑒𝑖𝑖ℎ
∑ℎ 𝑣𝑣𝑗𝑗ℎ2

(8) 

 
If we compute error of each entry as 𝑒𝑒𝑖𝑖ℎ = 𝑚𝑚𝑖𝑖ℎ − 𝑝𝑝𝑖𝑖ℎ, then ∆𝑢𝑢𝑖𝑖𝑖𝑖 can be expressed as: 
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∆𝑢𝑢𝑖𝑖𝑖𝑖 =  
∑ 𝑣𝑣𝑗𝑗ℎ(𝑚𝑚𝑖𝑖ℎ − 𝑝𝑝𝑖𝑖ℎ)ℎ

∑ 𝑣𝑣𝑗𝑗ℎ2ℎ
=  
∑ 𝑣𝑣𝑗𝑗ℎ𝑒𝑒𝑖𝑖ℎℎ

∑ 𝑣𝑣𝑗𝑗ℎ2ℎ
(9) 

 
Similarly, there is an analogous formula for the optimum value of an element of 𝑉𝑉. If we want to 
vary 𝑣𝑣𝑖𝑖𝑖𝑖, then the value of adjustment ∆𝑣𝑣𝑖𝑖𝑖𝑖 that minimizes the squared error is: 
 

∆𝑣𝑣𝑖𝑖𝑖𝑖 =  
∑ 𝑢𝑢𝑔𝑔𝑔𝑔𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔

∑ 𝑢𝑢𝑔𝑔𝑔𝑔2𝑔𝑔
(10) 

 
Here, ∑𝑔𝑔 is shorthand for the sum over all 𝑔𝑔 such that 𝑚𝑚𝑔𝑔𝑔𝑔 is non-blank. 
 
The denominator of (9) is ∑ 𝑣𝑣𝑗𝑗ℎ2ℎ   and the denominator of (10) is ∑ 𝑢𝑢𝑔𝑔𝑔𝑔2𝑔𝑔 . Those two terms can be 
ignored because they are not changing in each iteration. Discard the two terms and rewrite (9) and 
(10) in vector form, yielding: 
 

∆𝑢𝑢𝑖𝑖 =  �𝑒𝑒𝑖𝑖ℎ𝑣𝑣ℎ
ℎ

(11) 

∆𝑣𝑣𝑗𝑗 =  �𝑒𝑒𝑔𝑔𝑔𝑔𝑢𝑢𝑔𝑔
𝑔𝑔

(12) 

If we use the regularized objective function, the derived formula will append the regularization 
factor 𝜆𝜆: 
 

∆𝑢𝑢𝑖𝑖 =  �𝑒𝑒𝑖𝑖ℎ𝑣𝑣ℎ
ℎ

+ 𝜆𝜆𝑢𝑢𝑖𝑖 (13) 

∆𝑣𝑣𝑗𝑗 =  �𝑒𝑒𝑔𝑔𝑔𝑔𝑢𝑢𝑔𝑔
𝑔𝑔

+ 𝜆𝜆𝑣𝑣𝑗𝑗 (14) 

 
2.6 Gradient Descent 

 
The technique discussed above is an example of gradient descent. We are given some data points 
- the non-blank elements of the matrix 𝑀𝑀 - and for each data point we find the direction of change 
that most decreases the error function: the RMSE between the current 𝑈𝑈𝑈𝑈 product and 𝑀𝑀. To find 
a UV-decomposition, we adjust all available elements of 𝑈𝑈 and𝑉𝑉, i.e. 𝑢𝑢𝑖𝑖𝑖𝑖  and 𝑣𝑣𝑖𝑖𝑖𝑖, by minimizing 
the associated objective function in every iteration. 
 
The algorithm loops through all available measurements in 𝑀𝑀. For each available measurement 
𝑚𝑚𝑖𝑖𝑖𝑖, a prediction 𝑝𝑝𝑖𝑖𝑖𝑖 is made, and the associated prediction error 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖 is computed. For 
a given training case, we modify the 𝑢𝑢𝑖𝑖𝑖𝑖  and 𝑣𝑣𝑖𝑖𝑖𝑖  by moving in the opposite direction of the 
gradient. So the update rules for row vectors 𝑢𝑢 and column vectors 𝑣𝑣 are: 
 

𝑢𝑢𝑖𝑖: = 𝑢𝑢𝑖𝑖 − 𝛼𝛼∆𝑢𝑢𝑖𝑖 =  𝑢𝑢𝑖𝑖 − 𝛼𝛼��𝑒𝑒𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗 + 𝜆𝜆𝑢𝑢𝑖𝑖�
𝑗𝑗

(15) 



 

7 

𝑣𝑣𝑗𝑗: = 𝑣𝑣𝑗𝑗 − 𝛼𝛼∆𝑣𝑣𝑗𝑗 = 𝑣𝑣𝑗𝑗 − 𝛼𝛼��𝑒𝑒𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 + 𝜆𝜆𝑣𝑣𝑗𝑗�
𝑖𝑖

(16) 

 
where  𝛼𝛼 is the learning rate represents how quickly the prediction is getting close to the local 
optimum. One can expect better accuracy by dedicating separate learning rates α to each type of 
learned parameter [21]. However, in our case, the learning rate does not make a great impact on 
accuracy of reconstruction. Hence, when producing results for this report, the learning rate is not 
fully tuned. We use 𝛼𝛼 = 0.01 , which is a typical choice for many collaborative filtering 
algorithms. 
 
The process of gradient descent to minimize the associated objective / loss function is as follows: 
 
Step 1 Initialize 𝑢𝑢 and 𝑣𝑣 by assigning small random numbers; 
Step 2 Adjust 𝑢𝑢 and 𝑣𝑣 to make the objective function smaller; 
Step 3 Repeat Steps 2 until a stopping criterion is satisfied; 
Step 4 Use the obtained 𝑢𝑢  and 𝑣𝑣 to make final predictions 𝑝𝑝𝑖𝑖𝑖𝑖 = < 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑗𝑗 >. 
 
The stopping criterion in this study is reaching the maximum number of iterations 𝐼𝐼 , which 
assigned by users. Alternatively, we can track the amount of improvement in the RMSE obtained 
in each iteration of the optimization and stop when that improvement falls below a threshold. For 
example, after one iteration of updating both 𝑢𝑢 and 𝑣𝑣, if the difference between the observed 
RMSE on good dataset is less than 1 bps (1 bps equals 0.0001), the iteration stops, and we use the 
obtained 𝑢𝑢 and 𝑣𝑣 to make final predictions (i.e. data reconstruction). The pseudo-code of gradient 
descent is shown in Table I. 
 

Table 1: Pseudo-code of gradient descent 
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3. Implementation Strategies for PMU Data Reconstruction 

To make sure the collaborative filtering algorithm work well in the context of PMU data 
reconstruction, three very important considerations are 1) the normalization of measurements 
matrix, 2) the computation of the similarity weights and the selection of neighbors, and 3) 
optimization from randomness. The three components can have a significant impact on the 
accuracy of reconstruction results. 
 
3.1  Identifying Neighbors and Similarity Weights 
 
In power systems, although substations are connected by lines, they do not necessarily perform 
similar fluctuation in signal measurements, due to the phase difference. A filtering step where only 
the most likely signals are kept is one of the most critical aspects of building a collaborative 
filtering reconstruction, as it can have a significant impact on accuracy and performance. The most 
likely signals, also referred as neighbors, can be determined by a similarity measure. 
 
In the measurement matrix 𝑀𝑀 , each row vector represents one signal's data at 𝑡𝑡  time instant. 
Consider a t-dimensional signal 𝑎𝑎 as a vector 𝑚𝑚𝑎𝑎  ⊆  ℝ𝑡𝑡 , where 𝑚𝑚𝑎𝑎 has entries of measurement 
values if available, and 0 otherwise. Here, we treat blanks as a 0 value. Cosine can be employed 
to find similar signals by computing the cosine of the angle that the two signal vectors form. The 
cosine similarity between two signals 𝑎𝑎 and 𝑏𝑏 would then be computed as: 
 

cos(𝑚𝑚𝑎𝑎,𝑚𝑚𝑏𝑏) =  
< 𝑚𝑚𝑎𝑎,𝑚𝑚𝑏𝑏 >
∥ 𝑚𝑚𝑎𝑎 ∥ ∥ 𝑚𝑚𝑏𝑏 ∥

(17) 

 
While the sign of a cosine similarity indicates whether the correlation is direct or inverse, its 
magnitude (ranging from 0 to 1) represents the strength of the correlation. A larger (positive) 
cosine implies a smaller angle and therefore a smaller difference between two signals [22]. 
 
The pre-filtering of neighbors is an essential step that makes collaborative filtering approaches 
practicable and accurate by limiting the number of candidate neighbors to consider in the 
reconstructions. For each signal, only a list of the 𝑘𝑘 nearest neighbors (𝑘𝑘_𝑁𝑁𝑁𝑁) [23] whose cosine 
similarities have the greatest magnitude is kept. It is noteworthy that if the cosine similarity index 
value for the kept neighbor is negative, the inverse form of the neighbor is used for calculations. 
The number of neighbors 𝑘𝑘 used in the prediction requires tuning, which will be further discussed 
in Section IV. In general, a small number of high-confidence neighbors is preferable to a large 
number of neighbors for which the cosine similarities are not trustworthy [24]. The overall 
computational efficiency is much less expensive than involving all signals in the reconstruction.  
 
The cosine similarities not only allow the selection of trusted neighbors whose values are used in 
the reconstruction, but also provide the evaluations to give more or less importance to these 
neighbors. The principle of this strategy is to increase or reduce the magnitude of a signal value 
depending on the level of similarity between the signal and the missing signal. Specifically, each 
row vector of matrix 𝑀𝑀  which stands for each signal, is multiplied by a weight factor: its 
corresponding cosine distance with the missing signal. Thus, each row of matrix 𝑀𝑀 is penalized 
by a corresponding weight factor to take into account the significance of each signal. Then the 
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signals with larger magnitude of cosine will be considered as “fully similar” and will play an 
important role in each other’s reconstruction. The implementation of identifying neighbors and 
similarity weights will be discussed in Section IV. 
 
3.2 Normalization 
 
Another consideration when reconstructing missing PMU data is the fact that each signal has its 
own scale of values to respond to the same level of fluctuation for an event. The scale could be 
very different, ranging from 0 to 2,000 for current magnitude, or 0 to 550,000 for voltage 
magnitude. Therefore, the data needs to be preprocessed to remove these influences before the 
analysis step of collaborative filtering. This problem is usually addressed by converting the 
measurements 𝑚𝑚𝑖𝑖𝑖𝑖 to normalized ones 𝑚𝑚𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [25] [26]. 
 
The idea is to normalize the matrix by subtracting the mean value and then dividing by the 
maximum value for a signal. A raw measurement 𝑚𝑚𝑖𝑖𝑖𝑖 is transformed to 𝑚𝑚𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 by subtracting 𝑚𝑚𝑖𝑖𝑖𝑖 
form the average  𝑚𝑚𝚤𝚤���� and then deviding by 𝑘𝑘𝑖𝑖 the maximum value of the measurements given by 
this signal 𝑖𝑖 in available (non-blank) measurement subset 𝐴𝐴: 
 

𝑚𝑚(𝑖𝑖,𝑗𝑗)∈𝐴𝐴
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  

𝑚𝑚(𝑖𝑖,𝑗𝑗)∈𝐴𝐴 −  1
𝑡𝑡𝐴𝐴

 ∑ 𝑚𝑚(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑗𝑗 ∈ 𝐴𝐴 
�����������

𝑘𝑘𝑖𝑖
(18) 

 
𝑡𝑡𝐴𝐴 are numbers of available (non-blank) columns elements that represent for time instants. That 
way, we turn below-average values into negative numbers and above-average values into positive 
numbers.  
 
Note that the predicted data must be converted back to the original scale. If we choose to normalize 
𝑀𝑀, then after we obtain the predictions, we need to undo the normalization in post-processing. The 
final prediction is created by multiplying 𝑘𝑘𝑖𝑖, then adding the aforementioned mean 𝑚𝑚𝚤𝚤���� back. Thus, 
if the algorithm results in 𝑝𝑝(𝑖𝑖,𝑗𝑗)

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for an element in the normalized matrix, the value we predict for 
the element in the original measurement matrix is 𝑝𝑝(𝑖𝑖,𝑗𝑗)

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 plus whatever amount was subtracted 
during the normalization process: 
 

𝑝𝑝(𝑖𝑖,𝑗𝑗) = �𝑝𝑝(𝑖𝑖,𝑗𝑗)
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�(𝑘𝑘𝑖𝑖) +  𝑚𝑚𝚤𝚤���� (19) 

 
After normalizing the matrix, if we then calculate the cosine between signals, the cosine 
similarities will be different. With this change, the neighbors given by the cosine similarities can 
provide more accurate reconstructions. The effect of normalization will prove useful when we 
compare results with and without normalization in Section IV. 
 
3.3 Optimization and Randomness 
 
 Finding the 𝑈𝑈 and 𝑉𝑉 with the least RMSE involves starting with some arbitrarily chosen 𝑈𝑈 and 𝑉𝑉, 
and repeatedly adjusting 𝑈𝑈 and 𝑉𝑉  to make the RMSE smaller. When the RMSE does not get 

𝑚𝑚𝚤𝚤���� 



 

10 

smaller, we find the local minimum 𝑈𝑈 and 𝑉𝑉 However, there is no guarantee that the best local 
minimum from one trial will be the global minimum. To not getting stuck in local minima and 
increase the chances of finding the global minimum, we need to pick many different starting points, 
that is, different choices of the initial matrices 𝑈𝑈  and 𝑉𝑉  leading to various results of UV-
Decomposition. The process of repeating the reconstructions with random choices of starting 
points is called Monte-Carlo method. The final reconstruction can be the average of reconstruction 
results among the multiple rounds or the round with best reconstructions on the non-blank data 
entries. In Section IV, we will explain with field data how to find out the final reconstruction from 
local optimum. 
 
The procedure of seeking an optimum solution from repeatedly computation is as follows: 
 
Step 1 Normalize the matrix 𝑀𝑀;  
 
Step 2 Select 𝑘𝑘 nearest neighbors and multiply each neighbor vector by its corresponding cosine 
weight to form a new smaller matrix 𝑀𝑀′, which is used in reconstruction steps; 
 
Step 3 Repeat the UV-decomposition for multiple rounds by randomly picking initial matrices 𝑈𝑈 
and 𝑉𝑉; 
Step 4 Take the average of reconstruction results among the multiple rounds; 
 
Step 5 Undo the normalization. 
 
Fig. 2 is the diagram of building a data reconstruction algorithm based on collaborative filtering 
and three strategies mentioned in this section. The procedure is applied to the case studies in 
Section V. 
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Figure 2. Data reconstruction using collaborative filtering algorithm.  
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4. The Hyper-Parameter Tuning and Performance Evaluation 

In this section, we implement the latent factor model in Section II and proposed strategies in 
Section III on field PMU data with a concentration on comparing the effects before and after 
applying the strategies, as well as showing how the strategies can enhance system performance. 
To configure the proper hyper-parameter values of the algorithm, we control for the number of 
nearest neighbors 𝑘𝑘 , the number of iterations 𝐼𝐼 , dimension of the latent factor space 𝑑𝑑  and 
regularization factor 𝜆𝜆 to identify the appropriate configurations of the algorithm.  
 
A set of archived PMU data of the Western Interconnection is used to evaluate the performance of 
the algorithm. The sampling rate is 30 samples per second. We select one-minute event data are 
float numbers spanning 774 signals measured at over 1,800 time instants. The data includes a total 
of 126, 124, 260 and 264 available PMU signals of bus voltage magnitude, bus voltage phase 
angle, line current magnitude and line current phase angle, respectively. An abnormal event causes 
the disturbances in measurement values. To manually create data loss, we pick some signals, erase 
consecutive data that contain the ring-down features for different time length during the event. The 
proposed technique is then applied to reconstruct the lost data. Root-mean-squared error (RMSE) 
is the main performance criteria of the quality of the results. 
 
4.1  Identifying Neighbors and Similarity Weights 
 
4.1.1 Neighborhood Selection 
 
Neighbors selection is one of the most critical aspects of building a reconstruction system, as it 
can have a significant impact on both its accuracy and performance. We use cosine distance to 
measure similarities of signals. 

 
(a)  Good neighbor selection of signal 1     (b)  Good neighbor selection of signal 2 
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(c)  Bad neighbor selection of signal 1                         (d)  Bad neighbor of signal 2   
 
 
Fig. 3 is current magnitude data of two signals that have phase lag between them. Signal 1 and 
signal 2 are the thick blue lines in Fig 3a and Fig 3b, respectively. The two signals have completely 
different changing directions. In this case, neighbors whose values are used in the reconstruction 
should be chosen carefully. If we accidentally chose the signals having opposite fluctuation with 
the missing signal, the accuracy usually drops, due to the fact that the good neighbors with strong 
relations with the missing signal are “diluted” by the bad ones. 
 
There are 260 available signals of current magnitude in the system besides the above two signals. 
We compute the cosine similarity between signal 1 and the other 259 signal vectors as the inner 
product divided by the product of the vector norms. Then repeat the cosine calculation for signal 
2. Table I shows the partial cosine similarity of the two signals and their candidate neighbors. 
Here, we only show the top 9 and the last 9 candidate neighbors for signal 1 and signal 2. The plots 
of these signals in Fig. 3 will give us a more intuitive idea about how cosine measures the 
similarity. From the plots, we can see that the cluster of neighbor 1 to 9 (Fig. 3a) is apparently a 
better choice than the cluster of neighbor 251 to 259 (Fig. 3c) if we want to find neighbors of signal 
1.  
 
The cosine values in Table II confirm this observation. The cosine of the missing signal and itself 
is 1. If the cosine similarities are close to 1, then the signals will be considered as similar and will 
likely play an important role in each other's reconstructions. However, if cosine similarities are 
small numbers, the signals' behaviors are in fact different, this may lead to poor reconstructions. 
So the cluster of neighbor 1 to 9 is a better choice than the cluster of neighbor 251 to 259. The 
same goes for signal 2. 
 

Figure 3. Neighbor Identification 
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Table 2: Candidate neighbors and their cosine similarity 

 
 
 
4.1.2 Applying k Nearest Neighbors (k-NN) 
 
Fig. 4 is the contrast of reconstruction results with k-NN or not. Fig. 4a is the reconstruction result 
of using all available signals in the measurement matrix. Many signals do not have similar 
fluctuation with the signal we want to reconstruct. So the reconstruction results in a signal with 
undesired noises. Fig. 4b shows the reconstruction result of using k-NN. Only the top k neighboring 
signals with highest similarity weights are involved in the reconstruction. Apparently, the second 
approach has a significant improvement on reconstruction results, except the magnitude of the 
reconstructed signal is not large enough compared to the original signal. The RMSE is 0.1797 for 
not using k-NN in Fig 4a. The RMSE is reduced to 0.0394 if using k-NN as in Fig. 4b. We can 
conclude that applying k-NN can have a significant influence on the quality of the reconstruction. 
The number of neighbors k will be tuned in Section IV-D1. 
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(a)  Using all available signals.                                           (b)  Using k-NN. 

 
 
4.1.3 Weight Factors 
 
Among the 𝑘𝑘 neighbors that we select, we weigh the importance of each neighbor by its cosine 
similarity to the missing signal. Before reconstruction, each signal of matrix 𝑀𝑀 is multiplied by 
the corresponding cosine similarity weights. The reconstruction result considering weight factors 
is shown in Fig. 5. The RMSE score does not improve much, rising to 0.0366 from 0.0394 when 
there are no weight factors. The power of weight factors will not show up until normalization. We 
will go back to the effect of weight factors at the end of the normalization Section IV–B. 
 

 
Figure 5. Reconstruction result using k-NN with weight factors. 

4.1.4 Maintaining Neighbor Database  
 
In practice, the above neighbor analysis has to be done automatically a priori. In real-time, there 
is no valid information from the missing signal to identify which are the neighbors of this signal. 
Think about two signals with 15 seconds data losses. The lost data is treated as 0, which does not 

Figure 4. Reconstruction results using k-NN or not 
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impact the value of the dot product. Any other signals multiplying 0 would become 0, making all 
signals no difference. In this case, similarity weights are not trustworthy and will result in biased 
reconstructions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  The event at around 21:13:55    (b)  The event at around 21:43:55 
 

 
 
A common solution for these problems is to do similarity computation and neighbor selection 
beforehand when there are plenty of available measurements. And we maintain a database of sets 
of neighbors for each signal from previous events. For instance, in Fig. 6a, an event happened at 
around 21:13:55. The above analysis of similarity computation and neighbor selection is done 
using the event data recorded at this moment. A subset of neighboring signals is set aside for each 
signal in case some data is lost for that signal. Table III is the database of sets of neighbors that we 
maintain from historian events. And their respective cosine values are kept as similarity weights 
to specify the importance of each neighbor. When another event happened at around 21:43:55 as 
shown in Fig. 6b, we use the database of neighbors to reconstruct missing data. The two figures 
show that the behavior of each signal has little variance during two events because the statuses of 
the system are similar. 
 

Table 3: Candidate neighbors and their cosine similarity 

 

Figure 6. Two events at a different time 
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4.2 Normalization 

Normalization transforms each entry to positive or negative by comparing it to the mean value. As 
mentioned in Section III-B, normalization will affect cosine similarity in a good way. Fig. 7a plots 
the 9 neighbors that we used for reconstruction in the previous Section IV-A2. In measurement 
matrix, the 9 neighbors have original numbers as [24, 118, 187, 27, 23, 115, 116, 119, 83]. 
Normalization gives us a different neighbor set as expected in Fig. 7b with their original numbers 
as [83, 84, 115, 23, 27, 116, 145, 119, 118]. Some common neighbors appear in both neighbor 
sets. It is hard to say which neighbor set is better from the plots. So we test the neighbor sets and 
evaluate the reconstruction results.  

(a) No Normalization (b) Normalization

 

If we run the reconstruction using normalized measurement matrix and the neighbor set given by 
this normalized matrix, the RMSE will improve to 0.0224, compared to 0.0394 of the one using 
neighbor set without normalization. The improvement is also reflected by the plots in Fig. 8a 
compared to Fig. 4b. The magnitude of the reconstructed signal is getting closer to the original 
values. If multiplying the normalized measurement matrix by weight factors to each signal, the 
reconstruction result will be improved significantly as shown in Fig. 8b. The RMSE reduced to 
0.0060. So it is generally better to normalize the matrix first as preprocessing.  

Figure 7. Neighbor sets with or without 
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                (a)  Normalization only             (b)  Normalization and weight factors. 
 
 
 
4.3  Optimization from Randomness 
 
Monte Carlo method repeats the UV-decomposition with random starting points of 𝑈𝑈 and 𝑉𝑉 to 
search for the global optimal decomposition of a measurement matrix 𝑀𝑀. We run the algorithm for 
100 independent rounds. Each running of the algorithm converges to a local optimum as the blue 
lines seen in Fig. 9a. We compute the RMSE of each round compared to true values (red line) and 
show the corresponding RMSE in Fig. 9b. Among 100 rounds of RMSE, the minimum error is 
0.0024 and the maximum error is 0.0571. The average (yellow line) of 100 rounds has an RMSE 
of 0.0048. So generally, taking the average of multiply rounds is a better strategy than just one 
round that might lead to bad reconstruction result. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             (a)  100 rounds of reconstruction.    (b)  RMSE of 100 rounds 
 
 
 

Figure 8. Reconstruction results with normalization and weight factors. 
 

Figure 9. Optimization from randomness 
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4.4 Other Hyper-Parameters Tuning 
 
In this section, we study the effects of four hyper-parameters: number of nearest neighbors 𝑘𝑘, 
number of iterations 𝐼𝐼, dimension of the latent factor space 𝑑𝑑 and regularization parameter 𝜆𝜆. 
 
4.4.1 The Number of Nearest Neighbors k 
 
The number of nearest signals whose values will be involved in the reconstruction should be 
chosen carefully. If 𝑘𝑘 is too small, the algorithm will be sensitive to noise signals. But if 𝑘𝑘 is too 
large, the neighborhood might include too many signals that are not so close. Although a number 
of neighbors between 20 to 50 is most often described in the literature, see e.g. [27], [28] the 
optimal value of 𝑘𝑘 need to be tuned considering the number of available signals in the system. We 
pick a signal and erase 8 seconds data in it. A list of its top 30 candidate neighbors and their cosine 
similarities with the missing signal is shown in Table IV. Fig. 10a shows the plots of the missing 
signal and its top 30 neighbors. We reconstruct the missing signal with increased number of 
neighbors k. Fig. 10b shows the RMSE under each reconstruction with 𝑘𝑘 ranging from 1 to 30.  
 
 

Table 4: Candidate neighbors and their cosine similarity 
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(a) Plots of the missing signal and its top   (b)  Performance comparisons with  

30 neighbors.       Different k. 
 
 
As shown in Fig. 10b, the reconstruction accuracy observed for increasing values of 𝑘𝑘 typically 
behaves differently in three phases. When the number of neighbors is restricted by using a small 
𝑘𝑘  (e.g., 𝑘𝑘 ≤ 5 ), the reconstruction accuracy is not stable. As 𝑘𝑘  increases, more neighbors 
contribute to the reconstruction and the variance introduced by individual neighbors is averaged 
out. As a result, the reconstruction accuracy becomes stable. Finally, the accuracy usually drops 
when too many neighbors are used in the reconstruction (e.g., 𝑘𝑘 ≥ 50 in Fig. 4a), because the few 
strong local relations are “diluted” by the many weak ones. Since the RMSE when 𝑘𝑘 = 6 − 30 is 
pretty stable, we prefer to choose a small number of high-confidence neighbors, as well as saving 
some computational time. So we select 9 neighbors in the following analysis for other signals.  
 
4.4.2 The Number of Iterations I 

 
 
We fix 𝑑𝑑 = 5,run 1 to 50 iterations of the algorithm with different 𝜆𝜆. As Fig. 11a shows, with fixed 
𝑑𝑑 and 𝜆𝜆 each iteration improves the RMSE score of the reconstructed data, and it converges after 
about 40 iterations. That is, after 40 iterations, the RMSE score still improves but only less than 1 
bps for each iteration afterward. Different 𝜆𝜆 values give different final RMSE score. The best 
performer is 𝜆𝜆 = 0.04,  𝐼𝐼 = 42), giving an RMSE of 2.81 × 10−4. 
 
 
4.4.3 The Dimension of the Latent Factor Space d 
 
Fig. 11b shows the performance of the algorithm with fixed number of iterations 𝐼𝐼 = 50 and 
varying 𝜆𝜆 value and number of latent factors (𝑑𝑑ranges from 1 to 5). We can tell that the RMSE 
monotonically decreases with larger 𝑑𝑑, even though the improvement diminishes gradually. The 
best performer is( 𝜆𝜆 = 0.04,𝑑𝑑 = 5), giving an RMSE of 2.92 × 10−4. 
 

Figure 10. Parameter tuning for k. 
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Thus, the optimal values of hyper-parameters are then determined. When implementing the 
algorithm on field data in Section V, we use the following values for hyper-parameters: 𝐼𝐼 =
42,𝑑𝑑 = 5, 𝜆𝜆 = 0.04,𝑘𝑘 = 9. 
 
 

 
               (a)  Fix 𝑑𝑑 = 5, vary 𝜆𝜆 and 𝐼𝐼          (b)  Fix 𝐼𝐼 = 50, vary 𝜆𝜆 and 𝑑𝑑 
 
 
 
  

Figure 11. Performance comparisons with different 𝑑𝑑, 𝜆𝜆 and 𝐼𝐼. 
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5. Case Studies 

In this section, the proposed technique is applied on two different set of field data in the Western 
Interconnection. In the first set of data, all the PMU channels are available and missing parts of 
signals are intentionally designed. By doing so, the efficiency of the proposed method is shown by 
comparing results with original signals.  
 
5.1 Results and Discussion  
 
In this case, we design two scenarios by erasing consecutive measurements: 1) one signal has data 
losses for different time length, and 2) two or more signals have data losses. The reconstruction 
uses collaborative filtering algorithm with the optimized parameter set obtained in Section IV. 
Each scenario enables comparative research on performance between reconstructions and linear 
interpolations. In addition to comparing RMSE score, we compare the modal information, 
including frequency, damping ratio, total energy, and mode shape, from an event analysis 
application [29], using reconstructions and linear interpolations as input data. 
 
5.1.1  One Signal Has Data Losses for Different Time Length 
 
First, we conduct experiments with different length of data losses in a voltage magnitude signal. 
We erase consecutive measurements for 6 seconds, 8 seconds, 15 seconds, and 20 seconds in the 
signal. Fig. 12 and Table IV show the comparisons between collaborative filtering reconstruction 
and linear interpolation. Generally, the reconstructed data has higher accuracy and can give us 
modal information comparable to those from true values; while linear interpolation has larger 
errors, leading to incorrect damping and energy information. The mode shape plots are shown in 
Fig. 13. Here we only plot the mode shape of ten good signals including the bad/reconstructed 
signal for demo purpose. We can see that the linear interpolation destroys the mode shape 
component of the bad signal, while reconstruction gets it mostly right. We would have no 
information about mode shape magnitude and phase of this bad signal if we had discarded it. In 
20 seconds data loss case, almost the entire event data is missing. We still obtain an RMSE of 
6.64 × 10−4 and the modal information is acceptable.  
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                           (a)  6s data losses.     (b) 8s data losses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  (c)  15s data losses.       (d)  20s data losses. 
 

  
 
 
 
 5.1.2  One Signal Has Data Losses for Different Time Length 
 
Another study is instrumented in this section that focuses on multiple missing signals. Successful 
reconstruction depends on whether the neighbors are similar enough to the missing signals. We 
take current magnitude signals as test data because they have phase lags between them at event 
time. For example, the two missing signals in Fig. 14a have phase lag between them. If we choose 
the signals whose trend of changing is completely contrary with the missing signals, it will result 
in poor reconstruction. However, the collaborative filtering preserves the phase lag in the missing 
signals by using their respective neighbors to reconstruct the signals. 

Figure 12. Comparisons between collaborative filtering reconstruction and 
linear interpolation for different length of data losses. 
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Figure 13. Comparisons of modal information between collaborative filtering reconstruction and 

linear interpolation for different length of data losses. 
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Table 5: Comparisons of modal information between collaborative filtering reconstruction and 
linear interpolation for different data losses 

 
 
 

Table 6: Comparisons of modal information between collaborative filtering reconstruction and 
linear interpolation for multiple missing signals 

 
 
We erase 8 seconds data in 2, 4, 6, and 8 signals and study how the results of collaborative filtering 
reconstruction and linear interpolation affect the modal estimation. Fig. 14 and Table VI show the 
comparisons, where collaborative filtering does better regarding accuracy. The number of missing 
signals does not severely affect the RMSE and modal analysis of collaborative filtering. The reason 
is that no matter how many signals are missing; we can still find a few available neighbors to make 
the reconstruction. In contrast, the result sets of linear interpolation turn out to be very bad, and 
even worse with increasing number of missing signals. The linear interpolations result in damping 
ratios below 5% which means the system is poorly-damped. However, the original system is well-
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damped with a damping ratio of 10.63%. The mode shape of the missing signal, as shown in Fig. 
15 is preserved by reconstruction while it is destroyed by linear interpolation. 
 
5.2  The Second Case 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                       (a)  2 missing signals.     (b)  4 missing signals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         (c)  6 missing signals.    (d)  8 missing signals. 
 

  Figure 14. Comparisons between collaborative filtering reconstruction and linear 
interpolation for multiple missing signals. 
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Figure 15. Comparisons of mode shapes between collaborative filtering reconstruction and linear 

interpolation for multiple missing signals. 
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6. Conclusions 

In this project, available measurements from recent history and nearby signals are used as cross-
references to reconstruct missing data. A measurement matrix 𝑀𝑀 contains measurements of signals 
at certain time instants, while some entries are unknown because of data loss. The essential 
problem is to reconstruct the values of the unknown entries based on the values of the known 
entries. Collaborative filtering algorithms are employed to identify neighboring signals and make 
predictions on unknown entries.  
 
The algorithm finds two long, thin matrices 𝑈𝑈 and 𝑉𝑉, whose product is an approximation to the 
given measurement matrix 𝑀𝑀. Since the matrix product 𝑈𝑈𝑈𝑈 gives values for all signal-time pairs, 
those values can be used to predict the value of a blank in the measurement matrix. Gradient 
descent method corrects the errors between non-blank true values and predicted values after each 
iteration until convergence. 
 
To improve the accuracy of reconstruction, three strategies are implemented: 1) normalizing scales 
of the matrix, 2) identifying neighbors and assigning similarity weights, and 3) selecting 
reasonable results from multiple random trials. The effectiveness of strategies is tested using field 
PMU data. Experiments results show the algorithm is able to achieve accurate reconstructions with 
appropriate choice of parameters. The successful reconstruction of large-scale PMU data will 
enable real-time PMU application and significantly improve the accuracy and trustworthiness of 
the output. 
 
Future works could be on implementations of different types of collaborative filtering algorithms, 
and on automatic hyper-parameter tuning to obtain the optimal parameter sets, and on real-time 
platform development.  
 

 



 

29 

References 

[1]  J. De La Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor 
measurement applications in power systems,” IEEE Transactions on Smart Grid, vol. 1, 
no. 1, pp. 20–27, 2010. 

[2]  A. Bose, “Smart transmission grid applications and their supporting infrastructure,” IEEE 
Transactions on Smart Grid, vol. 1, no. 1, pp. 11–19, 2010. 

[3]  J. Ning, X. Pan, and V. Venkatasubramanian, “Oscillation modal analysis from ambient 
synchrophasor data using distributed frequency domain optimization,” IEEE Transactions 
on power systems, vol. 28, no. 2, pp. 1960–1968, 2013. 

[4]  J. Tang, J. Liu, F. Ponci, and A. Monti, “Adaptive load shedding based on combined 
frequency and voltage stability assessment using synchrophasor measurements,” IEEE 
Transactions on power systems, vol. 28. 

[5]  L. E. Miller, A. Silverstein, D. Anand, A. Goldstein, Y. Makarov, F. Tuffner, and K. Jones, 
“Pmu data quality: A framework for the attributes of pmu data quality and a methodology 
for examining data quality impacts to synchrophasor applications,” NASPI, Tech. Rep. 
PNNL 26313 / NASPI-2017-TR-002, March 2017. [Online]. Available: 
https://www.naspi.org/node/352 

[6]  M. Wu and L. Xie, “Online detection of low-quality synchrophasor measurements: A data 
driven approach,” IEEE Transactions on Power Systems, vol. PP, pp. 1–1, Nov 2016. 

[7]  M. Farrokhifard, M. Hatami, and M. Parniani, “Novel approaches for online modal 
estimation of power systems using pmus data contaminated with outliers,” Electric Power 
Systems Research, vol. PP, pp. 74 – 84, Nov 2015. 

[8]  C. I. Contributors, “Ip-1 iso uses synchrophasor data for grid operations, control, analysis 
and modeling for smart grid roadmap,” California ISO, CA, Tech. Rep., Oct 2010. 

[9]  V. Miranda, J. Krstulovic, H. Keko, C. Moreira, and J. Pereira, “Reconstructing missing 
data in state estimation with autoencoders,” IEEE Transactions on Power Systems, vol. 27, 
pp. 604–611, Dec 2011. 

[10]  F. Adinolfi, F. D’Agostino, A. Morini, M. Saviozzi, and F. Silvestro, “Pseudo-
measurements modeling using neural network and fourier decomposition for distribution 
state estimation,” in Innovative Smart Grid Technologies Conference Europe (ISGT-
Europe), 2014 IEEE PES. IEEE, 2014, pp. 1–6. 

[11]  M. Wang, J. H. Chow, P. Gao, X. T. Jiang, Y. Xia, S. G. Ghiocel, B. Fardanesh, G. 
Stefopolous, Y. Kokai, N. Saito et al., “A low-rank matrix approach for the analysis of 
large amounts of power system synchrophasor data,” in System Sciences (HICSS), 2015 
48th Hawaii International Conference on. IEEE, 2015, pp. 2637–2644. 

[12]  N. Dahal, R. L. King, and V. Madani, “Online dimension reduction of synchrophasor data,” 
in Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES. 
IEEE, 2012, pp. 1–7. 

[13]  Y. Chen, L. Xie, and P. Kumar, “Dimensionality reduction and early event detection using 
online synchrophasor data,” in Power and Energy Society General Meeting (PES), 2013 
IEEE. IEEE, 2013, pp. 1–5. 

[14] J.-F. Cai, E. J. Cand`es, and Z. Shen, “A singular value thresholding algorithm for matrix 
completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp. 1956–1982, 2010. 

[15]  R. Meka, P. Jain, and I. S. Dhillon, “Matrix completion from powerlaw distributed 
samples,” in Advances in neural information processing systems, 2009, pp. 1258–1266. 



 

30 

[16]  P. Gao, S. G. Ghiocel, and J. H. Chow, “Modeless reconstruction of missing synchrophasor 
measurements,” in PES General Meeting— Conference & Exposition, 2014 IEEE. IEEE, 
2014, pp. 1–5. 

[17]  (2009) The netflix prize. [Online]. Available: http://www.netflixprize.com 
[18]  F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Recommender Systems Handbook. 

New York: Springer., 2011. 
[19]  Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale parallel collaborative 

filtering for the netflix prize,” in International Conference on Algorithmic Applications in 
Management. Springer, 2008, pp. 337– 348. 

[20]  J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive Datasets. United 
Kingdom: Cambridge University Press, 2014. 

[21]  G. Tak´acs, I. Pil´aszy, B. N´emeth, and D. Tikk, “Matrix factorization and neighbor based 
algorithms for the netflix prize problem,” in Proceedings of the 2008 ACM conference on 
Recommender systems. ACM, 2008, pp. 267–274. 

[22]  G. Salton and M. J. McGill, “Introduction to modern information retrieval,” 1986. 
[23]  B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering 

recommendation algorithms,” in Proceedings of the 10th international conference on World 
Wide Web. ACM, 2001, pp. 285–295. 

[24]  F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, “Random-walk computation of 
similarities between nodes of a graph with application to collaborative recommendation,” 
IEEE Transactions on knowledge and data engineering, vol. 19, no. 3, 2007. 

[25]  J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of predictive algorithms for 
collaborative filtering,” in Proceedings of the Fourteenth conference on Uncertainty in 
artificial intelligence. Morgan Kaufmann Publishers Inc., 1998, pp. 43–52. 

[26]  P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grouplens: an open 
architecture for collaborative filtering of netnews,” in Proceedings of the 1994 ACM 
conference on Computer supported cooperative work. ACM, 1994, pp. 175–186. 

[27]  N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J. Herlocker, J. Riedl et al., 
“Combining collaborative filtering with personal agents for better recommendations,” in 
AAAI/IAAI, 1999, pp. 439–446. 

[28]  J. Herlocker, J. A. Konstan, and J. Riedl, “An empirical analysis of design choices in 
neighborhood-based collaborative filtering algorithms,” Information retrieval, vol. 5, no. 
4, pp. 287–310, 2002. 

[29] G. Liu, J. Ning, Z. Tashman, V. M. Venkatasubramanian, and P. Trachian, “Oscillation 
monitoring system using synchrophasors,” in Power and Energy Society General Meeting, 
2012 IEEE. IEEE, 2012, pp. 1–8. 

 
 


	Part I
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Background
	1.2 Literature Survey
	1.3 Scope of Work
	1.4 Report Organization

	2. Problem Formulation
	2.1 Problem Formulation
	2.2 Formulation of Low-Quality PMU Data as Spatio-Temporal Outliers

	3. Online Detection of Low-Quality PMU Data
	3.1  Similarity Metrics Between PMU Curves
	3.1.1 Similarity Metric for Low-Quality PMU Data with High Variance
	3.1.2 Similarity Metric for Low-Quality PMU Data with Low Variance

	3.2  Density-Based Outlier Detections for PMU Data
	3.2.1 Calculation of K-Distance(P)
	3.2.2 Identiﬁcation of K-Distance Neighborhood of P
	3.2.3 Calculation of Reachability Distance of Object P from Object O
	3.2.4 Calculation of Local Reachability Density of P
	3.2.5 Calculation of LOF of P

	3.3 Robust Detection Criterion and Parameter Selections
	3.3.1 Robust Detection Criterion
	3.3.2 Parameter Selections


	4. Case Studies
	4.1 Case Study with Synthetic Data
	4.1.1 Synthetic Data with High Sensing Noise
	4.1.2 Synthetic Data with Spikes
	4.1.3 Synthetic Data with Un-Updated Data
	4.1.4 Synthetic Data with False Data Injection

	4.2 Case Study with Real-World Data
	4.2.1 Real-World Data with High Sensing Noise
	4.2.2 Real-World Data with Spikes
	4.2.3 Real-World Data with Un-Updated Data
	4.2.4 Real-World Data with False Data Injection


	5. Software Implementation
	5.1 Software Introduction
	The algorithm discussed above is implemented as an open-source desktop toolkit [18] that provides convenient user experience. The executable program and source codes of the toolkit are available for public download through GitHub. A graphical user int...
	5.2 Software User Interface
	The GUI is developed using Qt cross-platform software developer [20]. The Qt Software Development Kit (SDK) features a multi-platform compatibility which allows the software to be migrated to other hardware platforms with slight modification to the so...
	5.3 Potential Future Development

	6.    Conclusions
	References

	Part II
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Background
	1.2 Literature Survey
	1.3 Scope of the Project
	1.4 Organization of the Report

	2. Collaborative Filtering Algorithm
	2.1 Problem Formulation
	2.2 Latent Factor Model
	2.3 Objective Function / Loss Function
	2.4 Regularization
	2.5 Minimizing an Arbitrary Element in 𝑼 and 𝑽
	2.6 Gradient Descent

	3. Implementation Strategies for PMU Data Reconstruction
	3.1  Identifying Neighbors and Similarity Weights
	3.2 Normalization
	3.3 Optimization and Randomness

	4. The Hyper-Parameter Tuning and Performance Evaluation
	4.1  Identifying Neighbors and Similarity Weights
	4.1.1 Neighborhood Selection
	4.1.2 Applying k Nearest Neighbors (k-NN)
	4.1.3 Weight Factors
	4.1.4 Maintaining Neighbor Database

	4.2 Normalization
	4.3  Optimization from Randomness
	4.4 Other Hyper-Parameters Tuning
	4.4.1 The Number of Nearest Neighbors k
	4.4.2 The Number of Iterations I
	4.4.3 The Dimension of the Latent Factor Space d


	5. Case Studies
	5.1 Results and Discussion
	5.1.1  One Signal Has Data Losses for Different Time Length
	5.1.2  One Signal Has Data Losses for Different Time Length

	5.2  The Second Case

	6. Conclusions
	References




