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Executive Summary 
 
During the past decade, the electric utility industry has increasingly used a combination of Energy 
Management System (EMS) and Supervisory Control and Data Acquisition (SCADA) systems to 
analyze, manage, and control the power system. The use of these monitoring and computing 
systems has helped power systems operators and utilities (stakeholders) run more efficiently, 
securely, and economically. Harnessing the processing power of modern computers and advances 
in telecommunication and information technology, these EMSs ensure that the systems operators 
have an accurate understanding of the network health and real-time status while ensuring wide-
area control and situational awareness.  
 
The increased reliance on information technology (IT) necessitates addressing the associated 
cybersecurity risks which are inherent to any cyber-physical system (CPS). The Department of 
Energy (DOE), Department of Homeland Security (DHS), and the North American Electric 
Reliability Corporation (NERC) have identified concerns that the grid is vulnerable to 
sophisticated coordinated cyber-attacks. With this project we addressed the following fundamental 
question: can reasonably realistic (i.e., attackers with limited capabilities) cyber-attacks be 
modeled and tested on electric power system (EPS) simulation platforms to evaluate: (a) attack 
severity and consequences, and (b) resiliency of energy management systems (EMSs) to such 
attacks? 
 
In Part 1 of the project, the ASU team developed a software EMS platform on which sophisticated 
attacks and countermeasures were tested, validated, and demoed. The work of the ISU team in 
building a hardware testbed for cybersecurity studies is described in Part 2.   
 
Part 1: Development of commercial grade energy management system and testing of cyber-
attacks and countermeasures 
 
The goal of this project is to identify realistic cyber-threats and vulnerabilities of modern EMSs as 
well as to propose countermeasures that system operators can implement in their systems. To 
obtain the most representative and accurate assessments possible, we developed a software 
platform which very realistically mimics the functions and operation of real world energy 
management systems. This java-based EMS platform, developed in collaboration with IncSys, 
includes a state estimator (SE) with bad data detector, real-time contingency analysis (RTCA), and 
security constrained economic dispatch (SCED). This complex tool allowed us to both verify how 
stealthy cyber-attacks are not detected by the EMS as well as observing the resulting physical 
consequences in a precise way. The platform has been used to observe the resiliency of systems of 
different sizes, varying from 200 to over 2000 buses, against a diverse number of attacks ranging 
from line overloads, to hiding post-contingency violations and stability limit violations. 
 
Intelligently designed false data injection (FDI) attacks have been shown to be able to by-pass the 
state estimation bad data detector present in an energy management system (EMS) and to introduce 
arbitrary errors in the states of the system under attack. These false measurements can be computed 
so that they will create unobservable physical consequences, such as line overflows. As part of the 
analysis of the vulnerability of real power systems to these types of attacks, in this project we have 
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formulated four computationally efficient problems that can be used to design attacks on realistic, 
large scale systems. 
 
The first two methods are based on row and column generation techniques which are useful to 
solve large linear programs which would otherwise be intractable. Row generation, which reduces 
the number of constraints, is used on line flow limits: we exclude all the constraints corresponding 
to lines which have a small power flow, as those are unlikely to be active in the optimal solution. 
If any of the constraints which have been omitted are violated in the final solution, they are added 
back to the problem and a new solution is calculated. The second algorithm uses both row 
generation and column generation. In this case, generators which are unlikely to modify their 
output as a consequence of the attack are removed from the problem, reducing the number of 
binary variables. The third method is based on the difference maximization algorithm, and in 
addition to being a linear program it also provides upper and lower bounds on the solution. The 
last algorithm uses Benders’ decomposition, in which the problem is divided into two sub-
problems which are solved iteratively.  
 
These four algorithms have been tested on different test systems to compare their performance 
from a computational efficiency point of view as well as efficacy of the computed attacks. 
Moreover, the results have been used to assess the vulnerability of the systems. In general, every 
time a line is congested it is possible to create an attack which will lead to an overflow on such 
line. Lastly, the results are not only dependent on the level of congestion of the target line but also 
on the overall congestion of the system. 
 
One of the assumptions of the attacks described is that the attacker has knowledge of system-wide 
information such as topology, generation data, etc. As we are looking at large scale test cases, it is 
reasonable to assume that it would be hard for an attacker to be able to gather full system data. For 
this reason, in this project we look at the possible physical consequences resulting from attacks 
designed with limited information. Specifically, we assume that the attacker has knowledge of 
only a small subgraph of the network and absolutely no knowledge of the outside system. This 
requires the attacker to be able to model the system response without any knowledge on its 
topology, generation, and loads; to this end, multiple linear regression can be used to predict the 
power injection at the boundary buses of the attack subgraph. This modified attack model is tested 
on the IEEE 24 and IEEE 118 bus systems, showing that successful attacks can be computed, even 
though the magnitude of the overflows is lower than the case in which the attacker has full 
knowledge of the system.  
 
Network topology is important system data used in various data processing modules in the EMS. 
Changes in topology can result from either system incidents or malicious physical attacks; but, in 
general, such topology alterations can be detected in the cyber layer. However, a sophisticated 
attacker can launch cyber-attacks that alter the topology information in an unobservable manner; 
furthermore, they can also mask a physical attack via a cyber-attack to create a more coordinated 
attack. This type of unobservable cyber-attacks on topology can be of two types: line-maintaining 
and line-removing. For a line-maintaining attack, the attacker changes measurements and line 
status information to make it appear that line that is not in the system is now shown as active at 
the control center via SCADA data; the opposite is achieved by a line-removing attack. Using 
similar techniques as the attacks described above, we have shown that this type of coordinated 
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attacks is feasible and cannot be detected by current EMS technology. As per our results on the 
IEEE 24 bus system, large unobservable overloads of transmission lines can be achieved. 
 
After having identified vulnerabilities of large scale systems that can be exploited by gaining 
access to the EMS, we focus our attention on possible countermeasures to protect the system from 
cyber-attacks. The FDI attacks described in the previous paragraphs create physical consequences 
by injecting false measurements from which the system operator gathers a wrong representation 
of the system loads. It is the mismatch between the real loads and the generation redispatch 
resulting from the fake loads which lead to the overloading of transmission lines. Based on this 
observation we designed three detectors, each relying on a different machine learning algorithm, 
to analyze and validate the observed loads in real time. The detectors are designed and trained to 
learn the patterns which exist between real system loads; when a new set of measurements is 
processed by the state estimator, the resulting loads are checked for the previously learnt patterns 
to understand if they represent normal or anomalous data. The three machine learning techniques 
used are: nearest neighbor, support vector machine, and replicator neural network. From the tests 
performed on the IEEE 30 bus system and on the synthetic Texas system, we have verified the 
high detection capabilities of the three detectors. Besides the very satisfactory performance of the 
algorithms designed, the importance of this approach lies in the fact that this countermeasure relies 
on data which is already being collected at the control center. Implementing these detectors in a 
real EMS would be fairly easy and accessible to any system operator.  
 
Part 2: Anomaly detection for wide-area protection and control in smart grid 
 
This research has focused on the design, development, and evaluation of robust algorithms for 
anomaly detection and mitigation for a couple of key applications in wide-area protection and 
control. The central theme of this research is to leverage Cyber-Physical System (CPS) properties 
of the grid and machine-learning algorithms to design robust Anomaly Detection System (ADS) 
that detects anomalies beyond the traditional information technology-based intrusion detection 
solutions. The following are the two key contributions. (1) The development of anomaly detection 
algorithm for Remedial Action Scheme (RAS), a wide-area protection scheme using a multi-agent 
based framework with machine-learning algorithms to distinguish attack behaviors from normal 
and fault behaviors, which in turn helps to achieve optimal protection decisions, such as load 
shedding. (2) The development of two anomaly detection algorithms for Automatic Generation 
Control (AGC): (a) model-based ADS and machine learning-based AGC. The former leverages 
the historical data as the redundant measurement to create different types of bounds/rules to detect 
attacks. The machine learning-based ADS deploys semi-supervised clustering algorithm for 
detecting cyber-attacks. The performance of the proposed anomaly detection and mitigation 
algorithms were evaluated through a combination of simulation and testbed-based experimental 
studies with realistic system models, datasets, and use-case scenarios. The results and testbed-
based evaluations show that these algorithms achieve detection accuracies to the extent that they 
are ready for pilot deployment and evaluations. The research has also advanced the state-of-the-
art research in CPS security for the power grid and the innovative use of machine-learning 
algorithms. This project also contributed to the workforce development in training several graduate 
students in research and also offering a couple of industry short courses for the utility industry.  
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1. Introduction 

1.1 Background 

Recent successful cyber-attacks on secure federal databases, secure financial systems, and even on 
credit card databases that were seemingly designed to be safe and off-limits from hackers and 
cyber-attacks suggest strongly that electric power systems (EPS) may not be immune to intelligent 
attackers either. While one cannot protect a system against all-knowing “omniscient” attackers, 
most real-world successful cyber-attacks are not due to attacker’s knowledge of the entire system 
but due to their ability to exploit simple and often known security weaknesses. The first level of 
defense for any cyber-physical system (CPS) including the electric power CPS should be to protect 
the physical and information technology infrastructure via a variety of physical (e.g., access 
control, substation protection, etc.) and cyber (e.g., firewall policies, intrusion detection, anti-virus 
software, and database security, to name a few) security mechanisms as recommended by NERC 
CIP standards. However, the cautionary tale to take away from recent attacks is that one must 
assume all systems can be hacked into. Therefore, there is a need to focus on second and third lines 
of defense. In particular, for EPS, since hacking in itself is insufficient to affect system operations, 
one must focus on credible data integrity threats that can affect operations and lead to systematic 
failures. Identifying such data integrity threats is an extremely important second line of defense; 
however, equally important is the crucial third line of defense that is often the most challenging: 
enabling real-time detection and protection against attacks. This proposal addresses both the 
second and third lines of defense. We assume that EPS communications and computer networks 
can be hacked into, when and where accessible from outside, given that such is the case for almost 
all other secure cyber systems. Identifying credible threats, evaluating their consequences, and 
developing defense mechanisms requires a detailed, realistic, and tractable model of electric power 
CPS operations; such a model should be inclusive of the numerous built-in resiliency mechanisms 
and the interactions between various system modules and grid operators.  

1.2 Overview of the problem 

After a malicious actor breaks into an EMS, a trivial type of attack would be to simply disconnect 
circuit breakers or otherwise change the operating condition of network devices without proper 
safety checks which could lead to blackouts or equipment damage. This type of attack has been 
carried out multiple times in the past decade against multiple utilities with the attack on Ukraine 
power grid system being the most prominent one [1]. The attack on the Ukrainian power grid 
clearly demonstrates that a SCADA system can be compromised. Based on this observation, we 
focus on a class of sophisticated, undetectable attacks. 
 
In our previous work we have shown that a class of false data injection (FDI) attacks against 
state estimation (SE) can be both unobservable to system operators and at the same time cause 
physical consequences on the grid [2]. In this project we focused on three main issues: 

1. Developing a realistic EMS software platform; 
2. Studying the vulnerabilities of large scale systems to FDI attacks; 
3. Developing countermeasures against FDI attacks. 
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1.2.1 EMS software platform 

While much work on the study of cyber-attacks against the electrical grid can be found in the 
literature, often very simplified models are used and the simulation of the attack consequences 
lacks realism. To validate our attacks and identify realistic vulnerabilities of state-of-the-art Energy 
Management Systems we have developed a Java-based software platform which mimics all the 
main functions of an EMS. This tool is based on open source software for power system studies 
called OpenPA. Leveraging the basic functions of OpenPA we built different blocks to perform 
all fundamental EMS operations:  state estimation (SE), real-time contingency analysis (RTCA), 
and security constrained economic dispatch (SCED). This platform allowed us to precisely observe 
the efficacy and the consequences of the cyber-attacks we created as well as to improve the attack 
strategies. Moreover, it made it possible to identify new vulnerabilities of the EMS which can be 
exploited by attackers. 

1.2.2 Vulnerability of large scale systems 

As previously stated, the integration of the communication cyber layer to power systems makes 
them vulnerable to cyber-attacks which could result in serious physical consequences or even 
system failure. Therefore, it is crucial to develop techniques to detect and thwart potential attacks, 
which requires evaluating system vulnerability to credible attacks. Assessing and evaluating 
consequences of possible attacks is extremely instructive for system operators, and is important 
for the secure operation of the power systems. 
 
Optimization problems have been proposed to design FDI attacks that aim to maximize line power 
flow [2], maximize operating cost [3], or change locational marginal prices [4]. However, the 
results have only been demonstrated for small systems. Similar to [2], we consider an optimization 
problem to determine the worst-case FDI attack that causes line overflow, but our goal is to design 
optimization algorithms that scale to significantly larger systems (i.e. thousands of buses). 
 
In addition to developing efficient ways to study the vulnerability of large scale systems, we also 
investigate the possibility of launching FDI attacks when the attacker has limited knowledge and 
access to the system. We assume the attacker only has access to information inside an attack sub-
network and absolutely no knowledge of the outside network. In order to overcome the limited 
information, we suppose that the attacker infiltrates the sub-network long before it executes its 
attack, so that it can observe the natural behavior of the system in order to predict the effect of an 
attack. In particular, we assume that the attacker has access to historical data inside the sub-
network that includes loads, costs, capacities, status, and dispatches of generators, and locational 
marginal prices. We suppose that the attacker uses multiple linear regression method to learn the 
relationship between the external network and the attack sub-network from historical data.  
Furthermore, we predict the response of the control center under such attacks in a local sub-
network via a bi-level optimization problem. 
 
The last type of attacks studied in this report involve the hiding of physical attacks on transmission 
lines via FDI cyber-attacks. We show that a coordinated cyber-physical attack in which a line is 
physically taken down while a cyber-attacks spoofs its status as sees by the system operator can 
lead to even greater line overloads and system disruption. 
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1.2.3 Attack detection using machine learning  

One of the main goals of the project is the design of new resiliency mechanism that can be 
implemented into EMSs to enhance their performance and reliability under cyber-attacks. To this 
end, we have developed advanced detection algorithms based on machine learning techniques 
which can validate the incoming data and identify measurements which could possibly be 
maliciously modified. As the underlying effect of the FDI attacks is to create a false representation 
of the system loads, the detectors are designed to learn patterns within the loads and in real-time 
validate the observed measurements by searching for their hidden patters. In addition to the high 
detection rate of the mechanisms we have designed, the power of this approach lies in the fact that 
it leverages data which is already available to every system operator. This makes our solution easy 
to be adopted by utilities to improve the current bad data detectors. 

1.3 Report organization  

The following report is organized in five main sections. Section 2 describes the development of 
the java-based EMS platform, illustrating its main components and how it can be used for 
validation and demonstration purposes. In Section 3 computationally efficient algorithms for the 
design of FDI attacks are described, with a focus on their application to the study of system 
vulnerabilities. The problem of limited information attacks is introduced in Section 4, while the 
description of cyber-physical attacks is in Section 5. The design of countermeasures is described 
in Section 6. Section 7 concludes the report by summarizing the main results achieved with this 
project and by presenting possible ways in which this work could be used by utilities and the 
industry at large. 
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2. Simulation and demo platform 

2.1 Purpose and design  

Cyber-physical attacks involve both IT infrastructure and the physical system. As a result, 
simulating the attack and being able to demonstrate its effect on the physical system is of great 
practical importance. To achieve this, we have designed and implemented a simulation and 
demonstration platform. 

2.2 Simulator structure 

The following figure shows the general structure of an energy management system under false 
data injection attack. 
 

 
Figure 1. Structure of the EMS with its main functional components 

A simulator needs to emulate all stages of the EMS as well as the attacker’s actions. SCADA 
system can be simulated with an AC power flow. To simulate in a realistic manner the 
measurements collected by the SCADA system used as input for the state estimator, random noise 
is added to selected power flow results. Attacker action can also be simulated at this stage by 
replacing the true measurements with false measurements. Load estimator is simulated as part of 
the state estimator. The simulator then does a Contingency Analysis (CA) and a Security 
Constrained Economic Dispatch (SCED) to determine the dispatch for the next cycle of the EMS. 
In the next section, the software used to simulate each of these components is described. 
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2.3 Simulator software components 

2.3.1 Power analysis and network processing 

The demo platform uses OpenPA library as its backbone to run and calculate power grid state with 
a given input. OpenPA is an open-source library developed by IncSys in Java programming 
language. It provides the following computational packages. 

2.3.1.1 OpenPA core 

OpenPA Core provides model representation and conversion functions to well-known power 
system software such as PSS/e and PSLF. Model element data is stored using comma separated 
values (CSV) format which makes manipulation of the input more accessible and straightforward. 
OpenPA Core stores all the model data in memory in a lightweight object named PAModel. 
PAModel in turn is based on LINKNET structure for representing networks [5]. PAModel 
provides a reliable foundation to extract data required for network analysis and handle special 
cases that may arise during power grid operation (e.g. branch disconnections which lead to creation 
of new islands in the grid) 

2.3.1.2 Power flow 

Power flow module implements a fast-decoupled power flow (FDPF) algorithm. It utilizes 
OpenPA core (along with mathematical tools library) to calculate adjacency matrix, energized 
islands, Bʹ, and Bʹʹ matrices. The algorithm has sub-routines to distribute network loss among 
generators based on their relative capacity to absorb those losses. The module also gives user the 
ability to control the amount of slack distribution, iteration count of the algorithm, and flat-start 
option among others. 
 
In general, power flow module provides a fast, reliable, and configurable way for the users to run 
power flow on an electric network and update the network elements with the data resulting from 
the power flow. This allows the use of power flow module both as a tool to simulate physical 
model and as a computational component inside the EMS. 

2.3.1.3 State Estimation (SE) 

State estimator determines the best estimate of the actual system state by solving an 
overdetermined power flow problem [6]. It uses a model of power system and whatever 
measurements are available [6]. The inputs to the state estimator are the network topology and 
network measurements. The output from state estimator is the estimated state (voltage magnitude 
and angle) and estimated measurements (branch flows and bus injections). 
 
OpenPA provides a state estimation module that does state and load estimation as well as 
observability analysis and bad data detection (Figure 2). To solve the equations for large system,  
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OpenPA depends on Suitesparse library (SuiteSparse, n.d.). OpenPA Core also provides the 
support to correctly model which network devices are telemetered and how precise the obtained 
measurements are. 
 
The bad data detector module uses an inverse Chi-Square test to determine if the state estimation 
solution contains bad data or not. In the case of bad data existence, the bad measurements are the 
ones with largest normalized residue error. OpenPA state estimator will identify observable and 
unobservable measurements, too. 
 

 
Figure 2. Detail of the state estimation block 

2.3.1.4 Real-Time Contingency Analysis (RTCA) 

Contingency analysis is used to compute system state after an outage. OpenPA provides a highly 
configurable and efficient RTCA module. Both the outages to be considered and the reported 
contingencies can be configured prior to running the RTCA program. For the purposes of the 
project, only non-radial branch outages are considered. OpenPA RTCA can also run in parallel 
mode. If a sufficient number of processing cores are available, it is capable of simulating thousands 
of contingencies in a matter of seconds. A schematic diagram of the RTCA is shown in Figure 3. 
 

 
Figure 3. Detail of the real-time contingency analysis block 
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2.3.2 Security Constrained Economic Dispatch (SCED) 

SCED package (Figure 4) has been developed in-house. It uses Mixed Integer Linear Programming 
(MILP) to find the optimal economic dispatch for the network. The package uses GurobiTM as 
solver and it is written to be compatible with OpenPA. SCED builds an independent model of the 
system using data from OpenPA Core and RTCA outputs. Then it uses GurobiTM to solve the model 
and acquire the optimal setpoints for all the generators in the system. 
The SCED package has also been designed to be easily configurable. It has multiple options for 
network loss modeling and in case of model infeasibility, a number of slack variables can be 
activated to help analyze the roots of infeasibility. 
 

 
Figure 4. Detail of the security constrained economic dispatch block 

2.3.3 Browser-based demo and simulation interface 

The visual interface is a web application. Its backend has been developed using Play Framework 
[7] which is an open source web application framework. To visualize the network, originally D3js 
library [8] was used. Figure 5 shows how the demo simulator depicts a synthetic model (named 
Cascadia). This model is designed to be geographically compatible with Washington State. The 
attack is designed to hide contingencies on the four transmission lines connecting western and 
eastern parts of the state. 
In the background, the framework utilizes OpenPA and SCED to run power flow, state estimation, 
RTCA, and SCED and updates the displayed graph based on the resulting network state. 
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Figure 5. Demo simulator representation of the Cascadia network 

 
Another attack was designed and carried out on Polish system. Because of the larger number of 
buses in that system and lack of geographical information, the visualization library was changed 
from D3js to Cytoscape.js [9]. Another contingency hiding demo visualization is shown in Figure 
6 and Figure 7 using the updated visualization library. 
 
The new platform has the capability of visualizing all available OpenPA case formats as well as 
providing configuration options graphically to the user. Figure 6 shows how the platform 
visualizes the Polish system. Figure 10 shows how the user can simulate attacker action by just 
clicking a checkbox. Selecting this option, the system automatically feeds attack measurements to 
the state estimator resulting in false output load estimates by the SE without any bad data flag. 
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Figure 6. Polish System as shown in the demo platform 

As another example, Figure 7 shows how the platform displays Texas Synthetic model. 
 

 
Figure 7. Texas Synthetic Model 
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To show that the bad data detector module does its job correctly, a few erratic measurements are 
programmed into the demo as Figure 8 shows. 
 

 
Figure 8. Injecting manually crafted bad data to test BDD functionality 

After running state estimation, the following table is displayed (Figure 9): 

 
Figure 9. Detected bad data in demo platform 

The platform strives to make all OpenPA functions available to the user through its easy-to-use 
interface. The user can craft their own bad data and inject it using the upload functionality. 
However, the user can use the ones already programmed into the demo to save time during a live 
presentation. 
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Figure 10. Injecting attack data through state estimator configuration dialog box 

The user can simulate operator action during attack by selecting the proper tab from the EMS 
dialog box. The user can temporarily save RTCA results after RTCA execution for later 
comparisons. The program also automatically saves SCED dispatch results. 
 
Assuming SCED dispatch suggestions are applied to the network by the operators, simulating what 
is happening in the physical system can be done by completely reloading the model and loading 
the dispatch from memory as the screenshot in Figure 11 shows. 
 

 
Figure 11. Applying SCED set-points from cyber system to the physical system 

Running an RTCA after this action is equivalent to a contingency happening in physical system 
(albeit with a dispatch designed by the malicious actor). The platform provides the option to 
compare the saved RTCA (from cyber model) with the current RTCA (representing actual 
contingencies in the physical system). A screenshot of such comparison is shown in Figure 12. 
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Figure 12. Comparison between cyber RTCA and physical RTCA. The contingencies marked 

with Current are physical contingencies while Saved denotes a cyber contingency 

It can clearly be seen that the contingencies in the physical world are different than the 
contingencies the cyber world knows about. This means the network is NOT operating in N-1 
secure conditions but the operators will think so based on the false information they get from the 
compromised EMS. 

2.4 Demo of attacks and countermeasures 

The here described platform has been used to present and demonstrate our work on the design of 
attacks as well as countermeasures. In the previous section, the demo interface is described by 
showing a line overloading attack, which is one of the attacks we have tested on our platform. 
Depending on the specific system under study and its level of congestion, these attacks can be 
designed to create and hide either base case overloads or line violations resulting from 
contingencies. This class of attacks, which is the focus of this report, is an example of how false 
data injection attacks can have physical consequences that may harm the power systems. However, 
FDI attacks can be designed to target system states, system topology, generator dynamics, and 
energy markets. Optimization problems have been proposed to design FDI attacks that aim to 
maximize line power flow, change locational marginal prices, or maximize operating cost. Once 
the optimization problem is formulated, the algorithms introduced in the reports can be readily 
used to evaluate system vulnerability (i) on large-scale power systems; (ii) under limited 
information attacks. 
 



 

13 

The countermeasures described in section 5 should be implemented in addition to the normal EMS 
operations, and we are currently working on implementing it on the Java-based EMS platform here 
described.  
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3. Vulnerability of large scale power systems to FDI attacks 

3.1 Motivation 

In [2], an FDI attack against SE that leads to an overflow is introduced. The system operator re-
dispatches the generation subsequent to the attack, resulting in an overflow on a target line. A bi-
level optimization problem, shown in Figure 13, is formulated to model such attacks in which the 
first level models the attacker while the second level models the system response. The first level 
of this optimization problem is the attacker’s problem, modeling its objective to maximize the 
power flow on a target line, subject to its limitations on: (i) resources to change states, 
characterized by the number of center buses in c; and (ii) detectability, characterized by the load 
shift, or the difference between the cyber (i.e. false) load and the original load, as a percentage of 
the original load. The second level is the system response to the attack, modeled by a Direct 
Current (DC) Optimal Power Flow (OPF).  
 
 

 
Figure 13. Bi-level optimization problem 

Techniques to solve bi-level programs with applications to power systems have been studied in [3] 
[3],[10],[11], but the problems they study have the same objective for both levels, and hence their 
techniques cannot be applied to our problem. This bi-level optimization problem can be 
reformulated to a mathematical program with equilibrium constraints (MPEC) [12][13] by 
replacing the second level by its Karush-Kuhn-Tucker (KKT) conditions. However, MPECs are 
non-convex and hard to solve efficiently in general. Many heuristics have been applied to MPECs 
involving reformulations and relaxations [14]-[16], but they typically require non-linear programs 
and/or proprietary solvers. Moreover, they do not guarantee optimality, convergence, nor speed. 
We have attempted to apply existing techniques to this MPEC (e.g. the SNOPT solver with Matlab 
interface), but in our experiments they failed to produce good solutions even on small-scale 
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problems. In [2], this MPEC is further reformulated to a mixed-integer linear program (MILP) by 
rewriting the complementary slackness constraints as mixed-integer constraints. As the system 
size scales, the MILP formulated in [2] becomes harder to solve because the number of constraints 
and their associated binary variables increases with the size of the network.  
 
To overcome this difficulty, we introduce four computationally efficient algorithms to evaluate the 
vulnerability of systems. In some cases, these algorithms yield the optimal attack. In cases in which 
it is intractable to find the optimal attack, these algorithms provide lower and/or upper bounds on 
the objective value. A lower bound highlights a specific overflow vulnerability for the system since 
it represents a feasible attack. An upper bound, on the other hand, constitutes a limit on the severity 
of this class of attacks.  
 
The first algorithm yields the optimal attack by reducing the number of line limit constraints and 
their associated binary variables using row generation [17]. The second algorithm further reduces 
the number of binary variables by judiciously eliminating generation limit constraints using 
column generation [17]. However, optimality cannot be guaranteed by this approach, so the 
algorithm only provides a lower bound on the objective. The third algorithm provides both lower 
and upper bounds via a linear program (LP) that maximizes the difference between target line 
cyber and physical power flows. The fourth algorithm provides a lower bound on the objective by 
utilizing Benders’ decomposition [18] to solve the original bi-level attack optimization problem 
instead of the re-formulated MILP. This algorithm not only applies to the original bi-level attack 
optimization problem, but also applies to any attacker-defender bi-level linear programs 
(ADBLPs). 
 

3.2 System and attack model 

The attacker’s knowledge and capabilities are described as follows: 
1. The attacker is able to perform system-wide DCOPF. 
2. The attacker controls measurements in a subset S of the network. 

 
An attack is defined to be unobservable if, in the absence of noise, there exists an 𝑛𝑛𝑏𝑏 × 1 attack 
vector 𝑐𝑐 ≠ 0 such that the measurement 𝑧𝑧̅ modified by the attacker satisfies 𝑧𝑧̅ = 𝑧𝑧 + 𝐻𝐻𝑐𝑐 [19]. An 
attacker with control of the measurements in 𝑆𝑆 can launch this attack if 𝐻𝐻𝑐𝑐 has non-zero entries 
only in 𝑆𝑆. Let 𝑥𝑥� be the estimated states without attack. The residual 𝑟𝑟 = 𝑧𝑧̅ − 𝐻𝐻(𝑥𝑥� + 𝑐𝑐) = 𝑧𝑧 + 𝐻𝐻𝑐𝑐 −
𝐻𝐻(𝑥𝑥� + 𝑐𝑐) = 𝑧𝑧 − 𝐻𝐻𝑥𝑥� is the same as the residual without the attack. Therefore, this attack can bypass 
the DC bad data detector (BDD). 
 
For tractability reasons, we use DC power flow model, but the attacks introduced in this paper can 
also be used to create false data that bypass AC BDD as in [2]. Given an attack vector 𝑐𝑐, 
unobservable false measurements can also be created even if AC measurement model and AC SE 
are used. 
 
For an attack vector 𝑐𝑐, load buses (i.e., buses with load) corresponding to non-zero entries of 𝑐𝑐 are 
denoted center buses. Given an attack vector 𝑐𝑐, a subgraph S bounded by load buses can be 
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constructed as in [20] that, if controlled by the attacker, can execute the unobservable attack 
associated with 𝑐𝑐. By modifying measurements only in S, the attacker can arbitrarily spoof the 
states of center buses without detection. The results of this unobservable attack will be seen by the 
system operator as load changes at load buses within S, while the total load of the system remains 
unchanged; it is for this reason that this class of attacks is also called load redistribution attacks. 
We model the power system with 𝑛𝑛𝑏𝑏buses, 𝑛𝑛𝑏𝑏𝑟𝑟 branches, 𝑛𝑛𝑔𝑔 generators, and 𝑛𝑛𝑚𝑚 measurements.  

3.3 Computational efficiency algorithms to solve attack optimization problems 

To overcome the computational difficulties brought on by a large number of binary variables, four 
computationally efficient algorithms are introduced in this section. Table 1 lists the key features 
of all four algorithms, in addition to the original MILP. 
 
 

Table 1. Comparison of four proposed algorithms 

Algorithm Program type Outcome Tractable test cases 
Original MILP MILP Optimal solution 24-bus 

Row generation for line limit 
constraints (RG) MILP Optimal solution 24-bus, 118-bus 

Row and column generation for 
line and generator limit 

constraints (RCG) 
MILP Lower bound 24-bus, 118-bus, 

Polish (2383-bus) 

Cyber-physical-difference 
maximization LP Lower & upper 

bounds 
24-bus, 118-bus, 
Polish (2383-bus) 

Modified Benders’ 
decomposition for bi-level linear 

programs (MBD) 
Iterative LP Lower bound 24-bus, 118-bus, 

Polish (2383-bus) 

 

3.3.1 Row generation for line limit constraints 

Row and column generation techniques are useful in solving large-scale linear programs. For 
constraints of the form 𝐴𝐴𝑥𝑥 < 𝑏𝑏, row generation retains only a subset of constraints (rows of 𝐴𝐴), 
and column generation retains only a subset of variables (columns of 𝐴𝐴). We iteratively add only 
those constraints and variables that are needed [21][22]. These techniques help reduce the size of 
matrix 𝐴𝐴, and hence accelerate the solving process. Similar techniques have been used by power 
system operators for large-scale optimization problems, including unit commitment and security 
constrained economic dispatch (SCED) [23]. In our problem, these techniques allow us to reduce 
the number of binary variables. If a line is operating with very low power flows compared to their 
ratings, its rating, the corresponding line limit constraint is unlikely to be active in the optimal 
solution of the original MILP, and therefore, can be removed. If the cyber power flow of a line is 
beyond its limit, we say this line has cyber overflow. If there are any post-attack cyber overflows, 
the line limit constraints for those lines are added back to the attack optimization problem (new 
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rows generated). If this algorithm terminates, the solution is guaranteed to be optimal because no 
constraints are violated. 

3.3.2 Row and column generation for line and generator limit constraints 

RCG modifies RG by further reducing the number of binary variables, now focusing on generator 
limit constraints. Since load changes are limited by the load shift factor, it is likely that in response 
to these load changes, only a small number of generators (denote as marginal generators) will re-
dispatch. RCG reduces the number of binary variables associated with generator limit constraints 
by assuming the generation output of non-marginal generators remains unchanged after attack. 
Similar to RG, post-attack cyber overflow lines are added to the set of critical lines (new rows 
generated). In addition, generators whose post-attack generation are different from pre-attack 
values are added to the set of marginal generators (new columns generated). This ensures the 
system response to the attack predicted by the attacker is correct. RCG can be efficiently applied 
to the Polish system with 2383 buses since the number of binary variables is significantly reduced. 
Since some of the variables are held constant, RCG is not guaranteed to yield the optimal solution 
for the original MILP. However, it does provide a feasible solution (lower bound). 

3.3.3 Cyber-physical-difference maximization  

The DM algorithm maximizes the post-attack power flow difference between physical and cyber 
power flows. Both lower and upper bounds can be derived using DM. Moreover, this algorithm 
only involves a linear program, and hence, can be applied efficiently on large systems. The DM 
algorithm solves an optimization problem which maximizes the difference between cyber and 
physical power flows on target line, subject to the attacker’s constraints. The resulting attack vector 
can be injected into a DCOPF to yield a lower bound on the physical power flow of the target line. 
The resulting maximum cyber-physical-difference can be used to calculate an upper bound on the 
physical power flow of the target line by adding it to the line limit. 

3.3.4 Modified Benders’ decomposition for attacker-defender bi-level linear programs 

Benders’ decomposition [24] can be utilized to solve a linear program with complicating variables 
in a distributed manner at the cost of iteration [25]. It is a popular technique to solve optimization 
problems of large size or with complicating variables. It is also effective in solving complex 
optimization problems such as stochastic programs and mixed-integer linear programs. In 
Benders’ decomposition, an optimization problem is decomposed into two sub-problems, wherein 
variables of each sub-problem are treated as constant in the other. The two sub-problems are solved 
iteratively until the solution converges. The MBD algorithm is formed by modifying the classic 
Benders’ decomposition algorithm to apply it on any ADBLP without converting it into an MILP. 
An attacker-defender bi-level linear program can be converted to a single-level problem by 
replacing the defender’s problem with its primal-dual optimality conditions. The resulting single 
level problem is non-convex and hard to solve because of a bilinear term in the constraints. 
Benders’ decomposition is utilized to decompose this problem into two problems, where each of 
them treat the variable of the other problem as constants. The slave problem uses the optimal 
solution of the master problem as inputs, and its dual variables at solution are used back in the 
master problem for optimality cuts.      
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3.4 Simulation results 

3.4.1 Simulation methodology 

In this section, we present numerical results using the algorithms described in Section 3.3. Two 
test systems are used, namely the IEEE 118-bus system and the Polish system. As stated in Section 
3.3, we note that the convergence of RG is not computationally tractable for the Polish system in 
a reasonable length of time. Therefore, we only apply RCG, DM and MBD to the Polish system. 
Prior to the attack, the IEEE 118-bus system and the Polish system have 7 and 17 critical lines 
(lines with power flow over 90% of their limits) and 15 and 6 marginal generators, respectively. 
The vulnerability of these two systems are evaluated exhaustively by targeting all critical lines. 
The 𝑙𝑙1-norm constraint 𝑁𝑁1 is chosen in the range [0.1:1] for the 118-bus system and [0.1: 2] for the 
Polish system, both with increment 0.1. Throughout, Matlab, Matpower, and the Gurobi solver are 
used to perform the simulations. All tests are conducted using a 3.40 GHz PC with 32 GB RAM. 

3.4.2 Computational efficiency 

The decrease in the number of binary variables characterizes the computational efficiency 
improved by RG and RCG. Table 2 illustrates a comparison of the average number of binary 
variables when applying the original MILP, RG, and RCG on both test systems. For the Polish 
system, the number of binary variables of RG is an estimate, as we are unable to verify the 
convergence of RG in a reasonable length of time. This table demonstrates that both RG and RCG 
can greatly reduce the number of binary variables compared to the original MILP, and therefore 
significantly improve the computational efficiency. Table 3 illustrates the statistics of the 
computation time for several target lines using the proposed algorithms with 10% load shift. For 
each target line, each algorithm is tested for the full range of N1 values stated above. We note that 
RCG is more efficient than RG since it requires fewer binary variables. As one would expect, DM, 
an LP, is the most efficient among the four proposed algorithms. Note that the number of iterations 
for MBD varies for different parameter choices (target line, N1, and LS), resulting in a large 
variation in computation time. 

Table 2. Comparison of average number of binary variables 

Test system Original MILP RG RCG 
118-bus 480 122 45 
Polish 6446 688 87 

 
Table 3. Statistics of computation time with 10% load shift 

Target line Algorithm Max (s) Min (s) Avg (s) Med (s) 

37 of 118-bus 

RG 7.53 0.95 3.33 1.9 
RCG 1.25 0.34 0.76 0.69 
DM 0.5 0.43 0.47 0.45 

MBD 1.88 1.57 1.63 1.59 

24 of Polish RCG 46.36 3.40 20.39 13.67 
DM 15.75 1.91 8.09 8.58 
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MBD 12.26 10.46 11.4 11.58 

292 of Polish 
RCG 76.34 27.47 39.29 33.69 
DM 16.77 1.91 7.02 6.10 

MBD 1846.2 9.86 358.73 10.31 
 

3.4.3 Results on maximum physical power flows 

Figure 14 illustrates the maximal power flow on target lines 104 and 141, respectively, when 
applying the four different algorithms described in Section 3.3 on the IEEE 118-bus system with 
10% load shift. We use this system to compare the bounds found by RCG, DM and MBD to the 
exact solution provided by RG; note, however, that RG is intractable for the Polish system. RCG 
provides the optimal solution for all target lines we have considered in the 118-bus system. Figure 
14. The maximal power flow vs. the l1-norm constraint (N1) with target (a) line 104, and (b) line 
141 of IEEE 118-bus system. LS=10%. 

 
Figure 14. The maximal power flow vs. the 𝑙𝑙1-norm constraint (N1) with target (a) line 104, and 

(b) line 141 of IEEE 118-bus system. LS=10%. 

Results for target lines 292, 24, and 1816 of the Polish system are illustrated in Figure 15. The 
load shift constraint is 10%. For target line 292, all four algorithms yield the optimal solution in 
the range 𝑁𝑁1𝜖𝜖 [0.1: 1.6]. For the remaining N1, our algorithms do not give the optimal solutions. 
We observe that the upper and lower bounds do not match for target line 24, but MBD yields the 
tightest lower bound. For target line 1816, DM provides the tightest lower bounds. 
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Figure 15. The maximal power flow vs. the 𝑙𝑙1-norm constraint (N1) with target (a) line 24, (b) 

line 292, and (c) line 1816 of the Polish system. LS=10%. 

3.4.4 Results on attack resources 

Figure 16 illustrates the relationship between maximal power flow and l0-norm of the attack vector 
(i.e. the number of center buses in the attack) versus the  𝑙𝑙1-norm constraint N1 for target line 292 
of the Polish system, with different load shift constraints. As N1 increases, so does the 𝑙𝑙0-norm of 
the attack, indicating that  𝑙𝑙1-norm is a valid proxy for  𝑙𝑙1-norm for our problem. If a larger load 
shift is allowed, the maximal power flow on target line increases, but the resulting l0-norm 
decreases. This indicates a trade-off between load shift and attacker’s resources: as the attacker 
attempts to avoid detection by minimizing load changes, it will require control over a larger portion 
of the system to launch a comparable attack. Similar results are also obtained on the IEEE 118-bus 
system. 
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Figure 16. (a) The maximal power flow and (b)  𝑙𝑙0-norm of the attack vector vs. the  𝑙𝑙1-norm 

constraint (N1) for target line 292 of the Polish system with different load shift. 

3.4.5 Line vulnerability 

Since the objective of the attack is to maximize the physical power flow on a target line, it is 
intuitive that congested lines are more vulnerable to this attack. We have found experimentally 
that almost every congested line can be overloaded. One exception is line 176 in the IEEE 118-
bus system. This is because line 176 is a radial line: it is the only line connected to a bus with a 
generator and no load. The line limit constraint in the OPF ensures that no possible dispatch could 
cause the line power flow to exceed the limit, even if based on counterfeit loads. In fact, any line 
with this radial configuration is immune to the proposed attack; moreover, these radial lines 
represent the only exceptions to our finding that congested lines can be overloaded. We have also 
found that lines that are not congested pre-attack may still be vulnerable to this attack, such as line 
141 in the IEEE 118-bus system (Figure 14 (b)) and line 2110 in the Polish system (Figure 17). 
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Figure 17. The maximal power flow vs. the  𝑙𝑙1-norm constraint (N1) for target line 2110 of the 

Polish system. LS=10%. 

3.4.6 Impact of overall congestion 

In the above, we have shown that virtually all critical or congested lines are vulnerable to overload. 
However, the extent of the vulnerability depends on several factors, such as the overall congestion 
of the system. This phenomenon is illustrated in Figure 18, which shows the worst-case attack for 
line 292 of the Polish system under different overall congestion levels. This overall congestion is 
adjusted by uniformly changing the line ratings for all lines. Note that higher line ratings mean a 
less congested system. As shown in Figure 18, as the overall congestion level increases, the 
maximal power flow on the target line also increases, even though the line is equally congested 
before attack in each case. 

 
Figure 18. The maximal power flow vs. the 𝑙𝑙1-norm constraint (N1) for target line 292 of the 
Polish system under different congestion levels 



 

23 

4. Limited information attacks 

4.1 Motivation 

Unobservable attacks leading to severe physical consequences can be designed via a bi-level 
optimization problem as shown in the previous section. This attack optimization problem requires 
the attacker to know system-wide information including topology, generation cost and capacity, 
and load data. In practice, obtaining all the required information can be difficult for the attacker. 
In order to ensure that the worst-case attacks are credible, we focus on understanding whether it is 
possible at all to design FDI attacks with only limited system information. Recently, [26]-[28] 
have demonstrated that it is possible to design FDI attacks against SE with inaccurate or limited 
topology information. However, physical consequences of the worst-case limited information FDI 
attacks have not been analyzed. The space of cyber-attacks is shown in Figure 19, and in this task 
we focus on the attacks categorized in the red shaded area. 
 

 
Figure 19. The space of cyber-attacks 

4.2 Assumptions on attacker’s knowledge and capability 

We assume the attacker only has access to information inside an attack sub-network L and 
absolutely no knowledge of the outside network E. In order to overcome the limited information, 
we suppose that the attacker infiltrates the sub-network long before it executes its attack, so that it 
can observe the natural behavior of the system in order to predict the effect of an attack. In 
particular, we assume that the attacker has access to historical data inside the sub-network that 
includes loads, costs, capacities, status, and dispatches of generators, and locational marginal 
prices (LMP). Historical data is sometimes directly utilized as pseudo-measurements to SE when 
the real-time information is incomplete. However, the attacker can be more sophisticated and use 
historical data to create higher fidelity boundary pseudo-measurements when they only have 
limited information. In this work, we suppose that the attacker uses multiple linear regression 
method to learn the relationship between the external network and the attack sub-network from 
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historical data. Furthermore, we predict the response of the control center under such attacks in a 
local sub-network via a bi-level optimization problem. 

4.3 Worst-case line overflow attacks with localized information 

4.3.1 System power flow with localized information 

The attacker cannot calculate the line power flow inside L since both the PTDF matrix K of the 
entire network G and the subset of power injections in external network E are unavailable to 
attacker. To form the line power flow with limited information, we introduce a vector of pseudo-
boundary injection 𝑃𝑃�𝐼𝐼,𝐵𝐵. The ith entry of 𝑃𝑃�𝐼𝐼,𝐵𝐵, namely 𝑃𝑃�𝐼𝐼,𝑖𝑖, corresponding to boundary bus i, 
represents the sum of power flows delivered from L to E at boundary bus i, as 

𝑃𝑃�𝐼𝐼,𝑖𝑖 = � 𝑃𝑃𝑘𝑘

𝑘𝑘𝜖𝜖𝑊𝑊𝑖𝑖
𝐸𝐸

 

where 𝑊𝑊𝑖𝑖
𝐸𝐸 represents the lines located in E that are connected to boundary bus i. The vector of line 

power flows in L can then be written as 
𝑃𝑃� = 𝐾𝐾�(�̅�𝐺𝑃𝑃�𝐺𝐺 − 𝑃𝑃�𝐷𝐷) − 𝐾𝐾�𝐵𝐵𝑃𝑃�𝐼𝐼,𝐵𝐵 

where �̅�𝐺 is the local generation to bus connectivity matrix, 𝑃𝑃�𝐺𝐺  is the local generation dispatch 
vector, 𝑃𝑃�𝐷𝐷 is the local loads, and 𝐾𝐾�𝐵𝐵 is the submatrix of K corresponding to boundary buses. 

4.3.2 Multiple linear regression to predict pseudo-boundary injections 

The optimal line overflow attack involves determining the attack vector in the first level and 
estimating the system response to the attack via the whole system DC OPF in the second level. 
However, due to limited knowledge, the attacker must predict the response of the OPF using only 
local knowledge. The OPF may be reformulated to include power balance, thermal limit, and 
generation limit constraints only in L, and capture all effects in the external network through the 
pseudo-boundary injections 𝑃𝑃�𝐼𝐼,𝐵𝐵. However, with this formulation, the attacker still cannot predict 
how the attack affects 𝑃𝑃�𝐼𝐼,𝐵𝐵 since it depends on both power injections in L and E. Therefore, before 
the attack is executed, the attacker cannot estimate the system re-dispatch after the attack 
accurately. 
 
If the attacker can obtain a large amount of historical power injections and pseudo-boundary 
injections data in L (for example, by observing the system over a long time), it can learn a 
functional relationship between pseudo-boundary injection, 𝑃𝑃�𝐼𝐼,𝐵𝐵, and power injections inside L. 
The attacker can then predict the pseudo-boundary injections with the power injection in L as 
 

𝑃𝑃��𝐼𝐼,𝐵𝐵 = 𝐹𝐹(�̅�𝐺𝑃𝑃�𝐺𝐺 − 𝑃𝑃�𝐷𝐷) + 𝑓𝑓 
 
where [𝐹𝐹, 𝑓𝑓] represent an affine relationship, and 𝑃𝑃��𝐼𝐼,𝐵𝐵 is the attacker’s prediction of pseudo-
boundary injection by capturing the functional relationship via a linear model. Multiple linear 
regression is a statistical method to find a linear relationship between multiple inputs and single 
output, and it can be applied to predict the affine relationship [𝐹𝐹, 𝑓𝑓]. 
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4.3.3 Attack optimization problem under localized information 

 
Figure 20. Bilevel optimization problem under limited information 

Figure 20 illustrates the formulation of the bi-level attack optimization problem with limited 
information. The first level determines the attack vector in L that maximize target line flow and 
the second level represents system re-dispatch after attack via DC OPF formulated with only 
information in L. However, since the attacker does not have knowledge of either the topology or 
the generator information in E, we assume that the attacker only minimizes the total cost of 
generation in L and approximates the effect of the total generation cost in E as the total cost of the 
pseudo-boundary injections in the second level modified OPF. For boundary bus 𝑖𝑖, this cost is 
estimated as the product of the LMP, 𝜆𝜆𝑖𝑖, and the pseudo-boundary injection at bus 𝑖𝑖. The equivalent 
constraints of pseudo-boundary injections is 𝑃𝑃��𝐼𝐼,𝐵𝐵 = 𝐹𝐹(�̅�𝐺𝑃𝑃�𝐺𝐺 − 𝑃𝑃�𝐷𝐷) + 𝑓𝑓.  
 
As with the original attack optimization problem for perfect information (as illustrated in Figure 
13), this problem with limited information is non-linear and non-convex. We employ the same 
modifications as in [2] to convert it into a MILP. 
 
Note that attacker can only overload lines in L. The attack optimization problem ensures that only 
measurements inside L can be changed by attacker. The post-attack system re-dispatch 
(OPF), on the other side, forces all the cyber line power flows within the line limits. Therefore, the 
attacker can only hide physical overflows inside L with FDI attacks. 

First Level: Attacker

 Objective:  maximize the physical power flow on target line 

Load shift bounds (of buses in ℒ) Subject to

Limit on the attack sub-graph size:
(Number of states that can be attacked)
• Only states inside ℒ can be changed
• States on boundary buses remain unchanged 

Second Level: System response under attack via modified DC OPF

  Objective: minimize total generation cost of generators in ℒ and cost of 
                   pseudo-boundary injections

Subject to

Thermal limit (of lines in ℒ)

Generation limit (of generators in ℒ and estimated external 
marginal generators)

O
ptim

al generation &
 state

Attack vector

Power balance inside ℒ:
Total generation – Total pseudo-boundary injections = Total loads

Equivalent constraints of pseudo-boundary injections
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4.4 Simulation results 

4.4.1 Simulation methodology 

In this section, we illustrate the efficacy of the attacks designed with the method proposed in Sec. 
4. To this end, we first compute the coefficient matrix with historical data using the multiple linear 
regression method. Subsequently, we solve the optimization problem to find the optimal attack 
vector inside L. Finally, we test the physical consequences of the attack vector on the entire 
network G. The test systems include the IEEE 24-bus reliability test system (RTS) and the IEEE 
118-bus system from MATPOWER v4.1. In particular, the line rating data for IEEE 118-bus 
system is adopted from [29]. The whole network DC OPF and limited information attack algorithm 
is implemented with Matlab. The optimization problem is solved with CPLEX. The load shift is 
set to be 10%.  
 
We focus on two scenarios for the historical data: 
 

• Scenario 1 - Constant Loads in E: In each instance of data, loads in E remain unchanged 
while loads in L varies as a percent p of the base load, where p is independent N(0; 10%). 
That is, power injections vary only at buses with marginal generators (denoted EM). The 
number of buses in EM is denoted by 𝑛𝑛𝐸𝐸𝐸𝐸. 

 
• Scenario 2 - Varying Loads in the entire network G: In each instance of data, loads in both 

L and E vary as a percent p of the base load, with p chosen independently for each load as 
N(0; 10%). In this scenario, power injections at all buses in E vary in the historical data.  

 
Note that the data in both scenarios also satisfy the following assumptions: (i) the topology for all 
the historical data remains the same, (ii) the historical generation dispatches data in both scenarios 
satisfies OPF, and (iii) there exists a subset of buses Z in E, for which power injections remain 
constant in the historical data. 

4.4.2 Results for IEEE 24-Bus RTS system 

In this subsection, we present attack consequences on the IEEE 24-bus RTS system for Scenarios 
1 and 2. The subnetwork L is illustrated in Figure 21. In each scenario, we compare the attack 
consequences on target line 28 determined by the optimization problems for two cases: (i) 
complete system knowledge (identified as global case), and (ii) limited system knowledge 
(henceforth identified as local case). For local case, we compare the physical power flow 
𝑃𝑃𝑙𝑙

𝑝𝑝 and the attacker-computed physical power flow 𝑃𝑃𝑙𝑙
𝑝𝑝����. The results of attacks are illustrated in 

Figure 22. We illustrate the difference between the physical and the attacker-computed pseudo-
boundary injections in Figure 23. 
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Figure 21. IEEE 24-bus RTS system decomposed into attack sub-network and external network 

 
Figure 22. The maximum power flow (PF) v.s. the 𝑙𝑙1-norm constraint (N1) when target line is 28 

of IEEE 24-bus system for (a) Scenario 1, and (b) Scenario 2 historical data. 

 
Figure 23. The pseudo-boundary power injection error v.s. the 𝑙𝑙1-norm constraint (N1) when 
target line is 28 of IEEE 24-bus system for (a) Scenario 1, and (b) Scenario 2 historical data. 
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4.4.3 Results for IEEE 118-Bus system 

The details of sub-network L are listed in Table 4. The results of attacks designed with historical 
data in Scenarios 1 and 2 are illustrated in Figure 24 with sub-plots (a) and (b), respectively. The 
difference between the physical and the attacker-computed pseudo-boundary injections at 3 of 18 
boundary buses, buses 23, 70, and 80, for both scenarios are illustrated in Figure 25 with sub-plots 
(a) and (b), respectively.  

Table 4 Summary of the attack sub-network in IEEE 118-bus system 

Buses 1-14, 16, 17, 23, 25-27, 30, 33-35, 37-40, 47, 49, 59-66, 68-70, 75, 77, 80, 
81, 116, 117 

Lines 1-17, 20, 22, 31-33, 36-38, 47, 48, 50-55, 65, 88-100, 102, 104-108, 115, 
116, 119, 120, 123, 124, 126, 127, 183, 184 

Boundary buses 13, 14, 17, 23, 27, 33-35, 40, 47, 49, 59, 62, 66, 70, 75, 77, 80 
 

 
Figure 24. The maximum power flow (PF) v.s. the 𝑙𝑙1-norm constraint (N1) when target line is 5 

of IEEE 118-bus system for (a) Scenario 1, and (b) Scenario 2 historical data. 

 
Figure 25. The pseudo-boundary power injection error v.s. the 𝑙𝑙1-norm constraint (N1) when 
target line is 5 of IEEE 118-bus system for (a) Scenario 1, and (b) Scenario 2 historical data. 
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Figure 22 through Figure 24 demonstrates that even though there are mismatches between physical 
and attacker-computed pseudo-boundary injections, the attacker-computed physical power flow 
can still be correct. Note that, in this case, both the cyber power flow and the attacker-computed 
cyber power flow reach the limit post-attack since the target line is congested before attack. 
Therefore, the attacker-computed physical power flow is the same as the physical power flow. 

4.4.4 Attack sensitivity to topology change 

In this subsection, we evaluate the efficacy of attacks generated from historical data with 
topologies that are different from the real-time topology. We assume that the attacker uses the 
historical datasets to compute the coefficient matrices, and is not aware of a line outage in E in 
real-time. We exhaustively test the consequences of the attacks designed with the computed 
coefficient matrices on all possible real-time topologies with one line outage in E. Note that the 
topology changes that will result in infeasible preattack DC OPF solution are not considered here. 
The 𝑙𝑙1-norm constraints (N1) are chosen as 0.05 and 0.4 for the IEEE 24-bus and 118-bus systems, 
respectively. We compare the results with those in Secs. 4.4.2 and 4.4.3 and summarize them in 
Table 5. Note that for the pseudo-boundary power injection errors, we compare the 𝑙𝑙2-norm of the 
errors on all boundary buses for each test case since there are multiple boundary buses in the test 
system. From the table, we can observe that if the attacker uses the coefficient matrix computed 
from historical data with different topology to design attacks, its evaluation of attack consequences 
may be undermined. Specifically for the case with Scenario 1 historical data in the IEEE 24-bus 
system, the attacker cannot obtain perfect prediction on pseudo-boundary injections any more 
since the real-time topology differs from that in the historical data. However, for most of the test 
cases, i.e., 86.47% and 98.26% cases for the IEEE 24-bus and 118-bus systems, respectively, the 
attacker can still cause line overflow with the inaccurate coefficient matrices. 
 

Table 5. Summary of the sensitivity analysis results under different topologies 

Test System & 
Scenario 

# of Total Test 
Cases 

% of Cases with 
Physical Overflow 

Decreases 

% of Cases without 
Physical Overflow 

% of Cases with 
Prediction Error 

Increases 
24-bus SC1 22 18.18% 13.63% 100% 
24-bus SC2 22 9.1% 13.63% 90.91% 

118-bus SC1 115 0 0 63.48% 
118-bus SC2 115 0 1.74% 10.43% 

4.4.5 Verification of AC power flow model 

In this subsection, we test the performance of the proposed attack strategies on AC power flow 
model. We first compare the attack consequences of the DC attacks in Secs. 4.4.2 and 4.4.3and the 
corresponding AC attacks in Figure 26. The AC attacks are computed with the designed DC attack 
vector. The system re-dispatch in response to each AC attack is via AC OPF. This figure validates 
that although the attack vector is solved by a linear optimization problem, it can still cause 
overflows in the AC system and the AC attack consequences track those of the original DC attacks. 
In addition, the impact of AC power flow historical data on the attack consequences are studied. 
We randomly generate a historical dataset, in which each instance is based on AC power flow 
model and satisfies all assumptions in Scenario 2. That is, the topology in each instance of 
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historical data is the same with the real-time topology. We then compute the coefficient matrix, 
solve the optimization problem to find the optimal attack, and test the physical consequences of 
the attack. The 𝑙𝑙1-norm constraints (N1) are chosen as 0.05 and 0.4 for the IEEE 24- bus and 118-
bus systems, respectively. We repeat this process 100 times and illustrate the results in Table 6. 
From this table, it can be seen that historical datasets with AC power flow data can reduce the 
prediction accuracy of the pseudo-boundary injections and the target line physical power flow. 
However, for both test systems, 100% of the designed attacks can result in physical target line 
overflows. These results demonstrate the robustness of the proposed attack strategy on AC power 
flow model. 
 

 
Figure 26. Comparison of the maximum power flow of DC and AC attacks. 

 

Table 6. Summary of the sensitivity analysis results under AC power flow historical datasets 

Test System % of Cases with 
Physical Overflow 

% of Cases without 
Physical Overflow 

Decreases 

% of Cases with 
Prediction Error 

Increases 
24-bus 100% 93% 46% 
118-bus 100% 0 100% 
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5. Cyber-physical attacks 

5.1 Motivation  

Network topology is important system data used in various data processing modules in the EMS. 
Changes in topology can result from either system incidents or malicious physical attacks; but, in 
general, such topology alterations can be detected in the cyber layer. However, a sophisticated 
attacker can launch cyber-attacks that alter the topology information in an unobservable manner; 
furthermore, they can also mask a physical attack via a cyber-attack to create a more coordinated 
attack. Such cyber-physical attacks can result in wrong EMS solutions with potential serious 
consequences. Therefore, it is instructive to fully understand such attack consequences as a first 
step to thwart them. 
 
Unobservable cyber-attacks on topology can be of two types: line-maintaining and line-removing. 
For a line-maintaining attack, the attacker changes measurements and line status information to 
make it appear that line that is not in the system is now shown as active at the control center via 
SCADA data; the opposite is achieved by a line-removing attack.  For both line-removing and 
line- maintaining attacks, an attack can either change only topology data (i.e., state-preserving 
topology attack) or both state and topology data (i.e., state-and-topology attack).  The class of 
unobservable cyber topology attacks is first introduced in [30]; however, the analysis in [30] is 
restricted to a subclass of state-preserving line-removing attacks in which an attacker changes 
topology information of the system without changing the states.  
 
We focus on line-maintaining attacks that requires both physical line outage and cyber-attack to 
mask the physical topology alteration, i.e., both physical and cyber topology are changed by the 
attacker. In [31], unobservable state-preserving line-maintaining attacks (i.e., only topology data 
is changed) are studied. However, changing only topology and not changing states limits the 
number of feasible lines amenable to attack and also requires large load shifts at the end buses of 
a target line. Therefore, we determine attacks that change both state and topology. 

5.1 System and attack model 

5.1.1 System model 

The electric power system can be represented by a graph G. The state estimation is then given by  
 

𝒛𝒛 = 𝒉𝒉(𝒙𝒙, G) + 𝒆𝒆 
 
where x is the system state vector, and e is a noise vector which is independent of x and is modeled 
as Gaussian distributed with 0 mean. The function 𝒉𝒉(𝒙𝒙, G) is a vector of nonlinear functions that 
describes the relationship between the system states and measurements for a topology G. In Figure 
27, we illustrate a typical temporal sequence of data processing units in the cyber layer. 
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5.1.2 Attack model 

The unobservable state-and-topology cyber-physical attack considered here models both a 
physical attack and a coordinated cyber-attack. 
 
We assume the attacker has the following capabilities: 
 

1. Attacker has knowledge of the topology 𝐺𝐺0 of entire network prior to physical attacks. 
2. Attacker has the capability to launch physical attack and observe and change measurements 

only for a sub-graph S of 𝐺𝐺0. The choice of S is described in detail in the sequel. 
3. Attacker has the capability to perform SE and compute modified measurements for S. 
4. Attacker has knowledge of the capacity and operation cost of every generator in the 

network. 
5. Attacker has historic data of load patterns and generation dispatch of the entire network.  

 

 
Figure 27 Temporal Sequence of Data Processing Units in The Cyber Layer within Attack 

We assume that the power system is observable before and after the physical attack. We assume 
that an intelligent attacker can learn the system information a priori, e.g., by hacking into the 
system databases and learning the system models and functions ahead of time. Moreover, attacker 
can also replace the generation data with public market data such as locational marginal prices and 
quantities to construct the attacks. 
 
We denote the line that is physically tripped by the attacker as the switching attack line and the 
two end buses of this line as the switching attack buses. Assume the switching attack line is line t 
and the topology prior to the physical attack is G0. The physical line status for line t changes from 
𝑠𝑠𝑡𝑡= 1 to 𝑠𝑠𝑡𝑡= 0 after the physical attack and the corresponding physical topology changes to G. 
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In general, a physical attack will be subsequently detected by the topology processing unit in the 
EMS and the system topology will be updated shortly after the detection. However, a sophisticated 
attacker can hide such physical attacks by launching an unobservable cyber-attack. In the resulting 
unobservable cyber topology attack, the attacker modifies line status as well as related bus 
measurements to alter the system topology G to a different “target” topology �̅�𝐺. Since the 
attacker’s aim is to hide the topology alteration caused by the physical attack, �̅�𝐺 should be chosen 
as G0. 
 
To launch a state-and-topology attack, the attacker injects line status attack vector b and 
measurement attack vector a. The attack vector b for line status overrides the physical change on 
line t’s status by setting for 𝑏𝑏𝑘𝑘=0 for 𝑘𝑘 ≠ 𝑡𝑡 and 𝑏𝑏𝑘𝑘=1 for 𝑘𝑘 = 𝑡𝑡. These changes lead to a new 
system state �̅�𝑥 for the system under attack. This attack modifies (𝑠𝑠, 𝑧𝑧) for topology G to (�̅�𝑠, 𝑧𝑧)̅ for 
topology �̅�𝐺 such that 
 
�̅�𝑠 = 𝑠𝑠 + 𝑏𝑏,      𝑧𝑧̅ = 𝑧𝑧 + 𝑎𝑎. 
 
In the absence of noise, the measurement attack vector satisfies 
 
𝑎𝑎 = ℎ(�̅�𝑥, �̅�𝐺) − ℎ(𝑥𝑥, 𝐺𝐺). 
 
For nonlinear measurement model and AC SE, we model a sophisticated attacker who attacks 
measurements and line status data for a sub-graph S of the network by first estimating the system 
states 𝑥𝑥� inside S using AC SE. The attacker then chooses a small set of buses in S to change states 
from the estimate 𝑥𝑥� to �̅�𝑥 = 𝑥𝑥� + 𝑐𝑐  such that the measurement vector 𝑧𝑧̅ after cyber-attack has entries 
 

𝑧𝑧�̅�𝑖 = �
𝑧𝑧𝑖𝑖,                         𝑖𝑖 ∉ 𝐼𝐼𝑆𝑆
ℎ𝑖𝑖(𝑥𝑥� + 𝑐𝑐, �̅�𝐺),     𝑖𝑖 ∈ 𝐼𝐼𝑆𝑆

 

 
where 𝐼𝐼𝑆𝑆 denotes the set of measurements inside S. 
 
We use the following method to identify the sub-graph S for an unobservable state-and-topology 
attack. Throughout, we distinguish two types of buses: load buses with presence of load and non-
load buses with no load. 
 

1. Use the optimization problem (the details are in the sequel) to determine the load buses 
from the attack vector c whose states need to be changed (defined as center bus) to enable 
the attack. 

2. Include all center buses in S. 
3. Extend S by including all buses and branches connected to the buses inside S. 
4. If there are non-load buses on the boundary of S, extend S by including all adjacent buses 

of the non-load boundary buses and the corresponding branches. 
5. Repeat 4) until all boundary buses of S are load buses. 
6. Check if there is a path (actual bus and branch connection) in S that can connect the two 

switching attack buses. If such path exits, then S is the attack sub-graph. If there is no such 
path, go to Step 7). 
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7. Use BFS method to find the shortest path connecting the two switching attack buses. 
Include the shortest path in S. Then this S is the attack sub-graph. 

5.2 Attack strategy 

In this section, we study the worst-case cyber-physical attacks with the following capabilities: (a) 
physically trip a switching attack line and mask the physical attack with a cyber-attack; (b) 
maximize power flow on a target line; and (c) avoid detectability by limiting load shift via changes 
in measurements. The attack resources available to the attacker may also be limited. We model 
this limitation by constraining the size of sub-network the attacker has access to. This leads to a 
constrained optimization problem. As noted before, two attack vectors are needed since both 
physical and cyber-attacks result in state and topology changes.  
 
Our two-step optimization problem captures the temporal nature of attack sequence involving a 
physical attack followed by several cyber-attacks. In Figure 28, we illustrate this temporal 
sequence of attack and system events. The system events are periodic and are denoted by S_t for 
the t_th event. At the start of each S_t, data is collected from SCADA and by the end of S_t, i.e., 
the start of S_(t+1), data is processed in the EMS. There are 2 attack instances, A_0 and A_1 to 
denote the physical and cyber-attack events, respectively. We assume the physical attack event 
A_0 is launched immediately after the start of the 0_th system event, i.e., S_0, and the coordinated 
cyber-attack event A_1 is launched shortly after, but before the start of next system event S_1. 
Following this cyber-physical attack pair (A_0, A_1), the cyber-attack is sustained between every 
two system events to maintain the worst generation dispatch, and thereby, sustain the maximal 
power flow on the target line. In Table 7, we denote how the cyber (measured) and physical (actual) 
data including generation dispatch, system state, topology, and loads vary at all system and attack 
events. 
 

 
Figure 28 Time sequence of attack and system events.  
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Table 7 Physical and cyber data for attack and system events 

Event 𝑆𝑆0 𝐴𝐴0 𝐴𝐴1 𝑆𝑆1 𝐴𝐴2 𝑆𝑆2 𝐴𝐴3 … 𝑆𝑆𝑇𝑇 𝑆𝑆𝑇𝑇+1 
Generation 
dispatch 𝑃𝑃𝐺𝐺

0 𝑃𝑃𝐺𝐺
0 𝑃𝑃𝐺𝐺

0 𝑃𝑃𝐺𝐺
∗ 𝑃𝑃𝐺𝐺

∗ 𝑃𝑃𝐺𝐺
∗ 𝑃𝑃𝐺𝐺

∗ … 𝑃𝑃𝐺𝐺
∗ 𝑃𝑃𝐺𝐺

∗ 

Physical 
topology �̅�𝐺 G G G G G G … G G 

Cyber 
topology �̅�𝐺 G �̅�𝐺 �̅�𝐺 �̅�𝐺 �̅�𝐺 �̅�𝐺 … �̅�𝐺 �̅�𝐺 

Physical 
state 𝜃𝜃0− 𝜃𝜃0 𝜃𝜃0 𝜃𝜃∗ 𝜃𝜃∗ 𝜃𝜃∗ 𝜃𝜃∗ … 𝜃𝜃∗ 𝜃𝜃∗ 

Cyber 
state 𝜃𝜃0− 𝜃𝜃0 𝜃𝜃0 + 𝑐𝑐0 𝜃𝜃∗

+ 𝑐𝑐 
𝜃𝜃∗

+ 𝑐𝑐 
𝜃𝜃∗

+ 𝑐𝑐 
𝜃𝜃∗

+ 𝑐𝑐 … 𝜃𝜃∗

+ 𝑐𝑐 
𝜃𝜃∗

+ 𝑐𝑐 
Physical 
load 𝑃𝑃𝐷𝐷 𝑃𝑃𝐷𝐷 𝑃𝑃𝐷𝐷 𝑃𝑃𝐷𝐷 𝑃𝑃𝐷𝐷 𝑃𝑃𝐷𝐷 𝑃𝑃𝐷𝐷 … 𝑃𝑃𝐷𝐷 𝑃𝑃𝐷𝐷 

Cyber 
load 𝑃𝑃𝐷𝐷 𝑃𝑃𝐷𝐷 𝑃𝑃�𝐷𝐷 𝑃𝑃�𝐷𝐷 𝑃𝑃�𝐷𝐷 𝑃𝑃�𝐷𝐷 𝑃𝑃�𝐷𝐷 … 𝑃𝑃�𝐷𝐷 𝑃𝑃�𝐷𝐷 

 
Assume the system topology and the generation at 𝑆𝑆0 are �̅�𝐺 and 𝑃𝑃𝐺𝐺

0, respectively. From Table I, 
we can see that the system physical topology changes to G after the physical attack in 𝐴𝐴0. The 
physical operation states, thereby, change to 𝜃𝜃0. The attacker then injects cyber-attack vector 𝑐𝑐0 
in 𝐴𝐴1 to change the load pattern from the physical load 𝑃𝑃𝐷𝐷 to the false cyber load 𝑃𝑃�𝐷𝐷 to mask the 
physical topology alteration.  
 
The physical and cyber loads at attack event A1 satisfy the following relationship:  
 

𝑃𝑃�𝐷𝐷 = 𝑃𝑃𝐷𝐷 + 𝐻𝐻1𝜃𝜃0 − 𝐻𝐻�1(𝜃𝜃0 + 𝑐𝑐0) 
 
where 𝐻𝐻1 and 𝐻𝐻�1 are dependency matrices between power injection and voltage angle for G and 
�̅�𝐺, respectively. The false cyber load 𝑃𝑃�𝐷𝐷 and topology �̅�𝐺 leads to a system redispatch to the optimal 
generation dispatch 𝑃𝑃𝐺𝐺

∗ at 𝑆𝑆1. Since the attacker optimization problem at each step models the 
system response, such an optimal dispatch will cause maximal power flow on the target line. 
Following this first cyber-attack 𝐴𝐴1, since the generation dispatch changes at 𝑆𝑆1, the physical 
system states also change to 𝜃𝜃∗. To sustain both the optimal dispatch 𝑃𝑃𝐺𝐺

∗ and the false cyber 
topology �̅�𝐺 at the next system event, i.e., 𝑆𝑆2, the attacker needs to maintain the false cyber load by 
injecting another attack vector c at 𝐴𝐴2. In the following attack events, the attacker can keep 
injecting c to maintain the false cyber load. This in turn ensures that the optimal dispatch and the 
false cyber topology are maintained and the maximal power flow on the target line is sustained. 
 
To model the cyber-physical attack events 𝐴𝐴0, 𝐴𝐴1, and 𝐴𝐴2 between 𝑆𝑆0 and 𝑆𝑆1, the optimization 
problem should capture the power balance relationship. However, since the switching attack line 
is determined by the optimization problem, both 𝐻𝐻1 and  𝜃𝜃0 are unknown before solving the 
problem. On the other hand, for the pure cyber-attack events 𝐴𝐴2 and 𝐴𝐴3, the power balance in the 
cyber layer is equivalent to the physical power balance. For each bus, the power injection also 
equals to the sum of power flow on the branches connecting to the bus. Therefore, we can use the 
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vector of the sum of power flow on the branches connecting to each bus, to replace 𝐻𝐻1𝜃𝜃  and 
eliminate 𝐻𝐻1. 
 
Therefore, instead of directly modeling the physical attack event 𝐴𝐴0 and cyber-attack events 𝐴𝐴1 
and 𝐴𝐴2 between 𝑆𝑆0 and 𝑆𝑆1, we use the first step optimization problem to model the pure cyber-
attack events 𝐴𝐴2 and 𝐴𝐴3 between 𝑆𝑆1 and 𝑆𝑆2 to determine the attack vector c for a fixed but 
undermined topology G. Such a c should be subject to bounds on both the attacker’s sub-graph 
size and the load shifts and can lead to the worst dispatch 𝑃𝑃𝐺𝐺

∗. Note that 𝑃𝑃𝐺𝐺
∗ is the worst dispatch 

that can lead to the maximal power flow on the target line under physical topology G and physical 
load. Once the line to attack is determined, we need the second step optimization to find the attack 
vector 𝑐𝑐0 that also ensures the worst dispatch 𝑃𝑃𝐺𝐺

∗. 
 
In the second step of the optimization, we compute the attack vector 𝑐𝑐0 at 𝐴𝐴1. We again use a two-
stage optimization problem to determine the 𝑐𝑐0 such that the optimal generation dispatch for this 
problem is forced to be same as 𝑃𝑃𝐺𝐺

∗. We, henceforth, define the attack vector solved in the second 
step as the initial attack vector. This step can be assumed as an on-line attack determination since 
it requires the real-time physical states data. 

5.3 Numerical results 

In this section, we test the effect of attacks designed with the two-step attack strategy for a 
nonlinear system model. The test system is the IEEE 24-bus reliable test system (RTS). We 
assume: (i) the system is operating under optimal power flow; and (ii) the loads of the system are 
constant and are equivalent to the historic load data that is assumed to be known to the attacker. 
To model realistic power systems, we assume that there are congestions prior to the attack and the 
attacker chooses one congested line as target to maximize power flow. We use MATPOWER to 
run AC power flow and AC OPF. The optimization problem is solved with CPLEX. 

5.3.1 Solution for the attack designed with the attack strategy 

In order to understand the worst-case effect of attacks, we assume there is a line congested prior 
to the physical attack. This is achieved in simulation by reducing the line rating to 95% of the base 
case power flow (apparent power) to create congestion. We exhaustively test all 38 lines as targets 
in the system. Figure 29 illustrates the maximal power flow (PF) and attack size (# of buses in sub-
graph) for load shift bounds τ = 10%, total lines to physically attack 𝑁𝑁𝑇𝑇 = 1, and the 𝑙𝑙1-norm 
constraint 𝑁𝑁1= 0.06. From Figure 29(a) we can observe that the attack vector determined by the 
two-stage optimization problem cause overflows in 33 target lines in linear model, i.e., 86.84% of 
the attacks are successful. For all such successful attacks, using the attack vector to construct an 
attack in the nonlinear model, in Figure 29(a), the AC PF in each line tracks DC PF solved with 
the attack strategy. In particular, 2 cases with target lines 9 and 11, respectively, have no center 
buses, i.e., for these lines the state-preserving attacks introduced in [31] suffice. In Figure 29(b), 
we can observe that 72.73% of the successful attacks can be launched inside a sub-graph with less 
than 16 total buses. 



 

37 

 
Figure 29 Summary of all 38 target lines under attack 

5.3.2 Consequences of the Attack in the Nonlinear Model 

In this subsection, we select a typical case to demonstrate the consequence of the unobservable 
state-and-topology cyber-physical attack determined by the attack strategy in the nonlinear system 
model. In this case, the target line is line 12. Under this condition, the switching attack line is line 
2.  
 
For the chosen target line, after launching the physical attack at 𝐴𝐴0 and injecting the initial cyber-
attack constructed with 𝑐𝑐0 at 𝐴𝐴0, the active power generation dispatch for generators at bus 7 and 
13 change from 215.69 MW and 230.96 MW to 200.69 MW and 245.67 MW, respectively (the 
dispatch of other generators remains unchanged). In the following events, as the attacker continues 
to inject the AC attacks constructed with attack vector c (determined by Step 1 optimization), the 
active power generation for these two set of generators are maintained at these values. Figure 30 
demonstrates the cyber and physical power flow variation during 20 system events. From Figure 
30, we can observe that once the active power generation dispatch changes to the optimal dispatch 
and remains unchanged in the subsequent system events, the physical overflow in the target line 
will be maintained by injecting the AC attack constructed with attack vector c. The heat 
accumulation may eventually cause this line to overheat and then trip offline all the while 
remaining unobservable to the control center. 
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Figure 30 Power flow variation on line 12 during 20 system events 
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6. Countermeasures 

The load redistribution attacks described in the previous sections have been proven and shown to 
be unobservable to current state-of-the-art bad data detectors in EMSs. For this reason we now 
develop countermeasures against this wide class of attacks in the form of detectors that analyze 
the measured loads, before they are used to perform economic dispatch, and determine if they 
represent a realistic state of the system or if they have been maliciously engineered. Our approach 
exploits the fact that system operators have access to historical load data which can be used to 
learn patterns in an offline manner and design machine learning algorithms that can check load 
consistency in real time scenarios. We use nearest neighbor algorithm, support vector machines 
and replicator neural networks to design three different detectors which are tested on realistic 
historical load data created for the IEEE 30-bus system. To design a detector that works for any 
possible load pattern that might occur, we exploit publicly available PJM zonal data [32] to create 
realistic load data for multiple years for the IEEE 30-bus system. 
 
Other attempts have been made to design detection algorithms and countermeasures against cyber-
attacks. In [33] for example, sparse optimization is leveraged to detect corrupted measurements 
while in [34] the detection is performed by using phasor measurements. In these studies, SE is 
used as a tool for identifying attacked measurements without any considerations on the system 
state they represent. Our work differs in that by applying machine learning on historical data we 
are able to check for consistency of the observed load data and judge if it corresponds to a realistic 
system configuration. In [35], machine learning techniques are applied to SE for anomaly detection 
but the models used to test the detection algorithms are not representative of the behavior of a real 
system because only the base case operating point is considered. The training data used by the 
authors in [35] represents measurements of the same system configuration and differs only for the 
random noise that is added. This makes it possible to find very efficient detection schemes, which 
are not guaranteed to perform as well when the system loads are different from the base case. 

6.1 System model 

6.1.1 Load data: model and design 

Throughout our analysis we use the IEEE 30-bus system and real load data published by PJM. On 
its website, PJM regularly provides the hourly loads of the 20 zones of the northeastern US grid. 
This historical data is available starting from the year 1993 and it is updated monthly with the most 
recent figures. We leverage the fact that the 30-bus system contains 20 load buses to create a test 
case with realistic load profiles, by mapping each PJM zonal load to a corresponding load in the 
IEEE system. The zonal loads and the loads in the IEEE 30-bus system are ranked by relative size 
compared to the total load size of their respective system, as shown in Table 8.  
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Table 8. Relative size of PJM zones and 30-bus system loads 

 

The percentage distribution of the loads of the PJM system is very close to that of the loads in the 
30-bus system, which justifies the mapping from each zone to the similarly sized load in our test 
system. The mapping has been performed by first determining a mapping ratio between the PJM 
and the 30 bus system and then multiplying every hourly load of the 20 zones by this factor. In 
this way, we created new load configurations corresponding to every hour of the year for our test 
system. Creating load configurations in which many lines are congested or at their rated limits 
maximizes the chances of finding successful attacks since a congested system often represents a 
worst-case scenario in terms of vulnerability to cyber-attacks and possible physical consequences. 
Thus, we defined the mapping ratio as the ratio between the net load of the 30-bus system base 
case and the maximum net load of the PJM system:  
 

𝑚𝑚𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑟𝑟 =
30 𝑏𝑏𝑏𝑏𝑠𝑠 𝑛𝑛𝑛𝑛𝑡𝑡 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙

𝑚𝑚𝑎𝑎𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃 𝑛𝑛𝑛𝑛𝑡𝑡 𝑙𝑙𝑙𝑙𝑎𝑎𝑙𝑙
× 𝑘𝑘 =

189.2 𝑃𝑃𝑊𝑊
144644 𝑃𝑃𝑊𝑊

× 1.39 = 1.308 × 10−3 

 
where 𝑘𝑘 is a constant that was chosen in order to obtain a system with moderate amount of 
congestion. We used the PJM data to create a load dataset for the IEEE 30-bus system for five 
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years, corresponding to the period from January 2012 to December 2016 which we assumed to be 
our normal data. In the detection experiments, the first four years are used as historical data to 
train the detectors and the last year is used as the test data. Thus, the training data contains 35064 
distinct load profiles (one for each hour), while the test data comprises 8784 load profiles. 

6.1.2 Attack model and design 

In order to test the detection capability of the proposed algorithms, we design many attacks 
following the model presented in Section 3.2. After computing the attack vector, the set of false 
measurements is passed to the state estimator which calculates the corresponding loads. It is this 
set of attacked loads that need to be flagged by the proposed detectors as malicious. We use this 
attack strategy to compute attacks on every hour of the 2016 synthetic data during which one or 
more lines were congested. A DCOPF is run on each of the hourly load profiles to measure the 
level of congestion in the system. Every time a solution showed a line at or above 85% of its rating, 
an attack was computed. We define an attack as successful if it leads to a flow on the target line 
greater than 100% of its rating. The results of this process are summarized below: 
 

DCOPF results 

• 1197 hours out of 8784 total hours with at least one line above 85% rating; 

• 450 hours out of 1197 hours with at least one line at 100%. 

Successful attacks on congested hours 

• LS = 10% : 437 successful attacks; 

• LS = 15% : 479 successful attacks. 

• As shown by these results, depending on the specific load configuration at each hour, the 
search for an attack is not always successful. Moreover, the greater the allowable load shift, 
the higher the chances of computing a successful attack. 

6.2 Detection algorithms 

We propose three detectors which analyze the measured loads of a power system during any hour 
of the day and determine if they are normal loads or if they have been maliciously modified through 
a cyber-attack. Each detector is based on a different machine learning technique, but the general 
approach in determining the soundness of a set of measurements is similar. The measured load 
configuration to be tested is given as input to the detector, which generates a scalar value based on 
a metric specific to the machine learning technique used. This value is compared against a 
predetermined threshold to label the loads as normal or attacked. The specific value of the 
threshold is chosen as a tradeoff between detection probability and false alarm rate. 

6.2.1 Nearest neighbor algorithm 

Nearest neighbor algorithms are based on the assumption that data labeled as normal lies in limited, 
dense regions of space while anomalies are located further from these neighborhoods [36], [37], 
see Figure 31. Define 𝒍𝒍𝒊𝒊 as the 1 × 𝑛𝑛𝑙𝑙 vector of loads at time 𝑖𝑖, where 𝑛𝑛𝑙𝑙 is the number of loads in  
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the system. The normal data is represented by the 𝑛𝑛ℎ historical load vectors which have been 
measured in the past and we indicate as 𝒉𝒉𝒋𝒋, for 𝑗𝑗 = [1: 𝑛𝑛ℎ]. The classification is done by measuring 
the Euclidean distance between the current load profile 𝒍𝒍𝒊𝒊 and every vector 𝒉𝒉𝒋𝒋 in the historical data 
set (assumed to be attack free). The closest distance 𝑙𝑙𝑖𝑖 for a sample 𝒍𝒍𝒊𝒊 is defined as 

𝑙𝑙𝑖𝑖 = min
𝑗𝑗=[1:𝑛𝑛ℎ]

�𝒍𝒍𝒊𝒊 − 𝒉𝒉𝒋𝒋�
2
. 

To label 𝒍𝒍𝒊𝒊 as normal or attacked, 𝑙𝑙𝑖𝑖 is compared against the predetermined threshold.  

6.2.2 Support vector machine 

The second machine learning technique we tested is a support vector machine (SVM), in which 
data is used to define a boundary of the region of space in which all the normal points lie [37]. The 
training of an SVM results in identifying a hyperplane which includes all of the normal training 
data, and none of the abnormal training data, as shown by Figure 32. For non-linear classification, 
the training phase uses kernels to map the data to high-dimensional spaces making it possible to 
learn complex regions. Training of SVMs can be supervised or semi-supervised: in the former, 
both normal and abnormal data is used for learning, while in the latter only normal instances are 
considered.  

Figure 31. Graphical representation of the concept of nearest neighbor 
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Figure 32. Graphical representation of the concept of support vector machine 

In our tests, the data points used for training are the historical load vectors 𝒉𝒉𝒋𝒋 from 2012 to 2015. 
All historical points are labeled as 1, indicating that they are normal loads, making this a semi-
supervised machine learning algorithm. Preliminary testing showed that a linear hyperplane is not 
effective in classifying the load data, so instead we use a Gaussian radial basis kernel function to 
create a complex, nonlinear boundary [38]. 
 
The testing phase consists in feeding the normal load vectors for 2016 and the attacked load vectors 
to the SVM; for each load instance, the SVM computes a score between [-1,1]. The closer a score 
is to +1, the higher the confidence that the loads are normal; vice versa, scores close to -1 indicate 
that the loads have likely been maliciously modified by an attacker. These scores are the metric 
which is compared against a threshold to label the observed loads of the system as normal or 
attacked. 

6.2.3 Replicator neural network 

Replicator neural networks are a particular type of neural networks which are trained to 
compress and then reconstruct the data that is fed to them. For this reason, replicator neural 
networks have the same number of output neurons as the number of inputs. The neural network 
topology typically used includes three hidden layers with an equal number of hidden nodes each. 
The training phase aims at creating connections that are able to compress the input data (which 
usually has higher dimensionality than the number of nodes in each hidden layer) and then 
reconstruct it at the output nodes minimizing the error between input and output. The anomaly 
detection is performed by feeding to the trained network the data to be tested and measuring the 
discrepancy between input and output. For each load vector 𝒍𝒍𝒊𝒊 at time 𝑖𝑖 the error is computed as 

𝛿𝛿𝑖𝑖 = ‖𝒍𝒍𝒊𝒊 − 𝒐𝒐𝑖𝑖‖2 

where 𝒐𝒐𝒊𝒊 is the output load vector of the neural network. Comparing the replication error with a 
set threshold allows for the labeling of the data point as normal or attacked.  
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Figure 33. Model of the replicator neural network used 

 
Intuitively, this neural network is trained to learn a model of the correlation between the different 
loads in the system. Real loads will have a close correspondence to the model learnt and they will 
be reproduced with a small error, while a sample with loads that have been maliciously modified 
will yield bigger replication errors. In this work we used a neural network, shown in Figure 33, 
made of three hidden layers, each consisting of 15 nodes. The nodes in layers 1 and 3 have a 
sigmoid activation function, while the nodes in layer 2 have a linear activation function. We also 
tested a similar neural network, with all layers having sigmoid activation functions but it did not 
perform as well. 
 
The data used for training is the load profiles from 2012 to 2015. In the training process, each 
sample is fed to the network and the weights of the internal connections are adjusted to minimize 
the difference between input and output. This process is performed through backpropagation of 
the error and it is solved using Levenberg-Marquardt optimization with mean squared error as 
performance function [39], [40]. 

6.3 Experiments 

6.3.1 Experimental methodology 

The testing methodology we follow consists of two steps and is the same for each detector. First, 
we compute the detector specific metric (minimum distance, score, or replication error) for each 
load configuration in the test data of 2016 and then we evaluate the performance in terms of missed 
detection (𝑃𝑃𝐷𝐷) and false alarm rate (𝐹𝐹𝐴𝐴). Missed detection is defined as the ratio of the number of 
attacked cases flagged as normal to the total number of attacked cases, while false alarm rate is the 
ratio of the number of cases in which normal data is flagged as attacked to the total number of 
normal cases (8784 hours). These two metrics are evaluated for the dataset across a range of 
detection thresholds, thereby characterizing the tradeoff between missed detection and false alarm 
rate. These results are used to plot the receiver operating characteristic (ROC). 
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6.3.2 Experimental results 

For the nearest neighbor algorithm, the minimum distance of every normal and attacked case 
from the closest sample in the training dataset is presented in Figure 34. For each hour of the 
year (x-axis) the minimum distance is plotted on the y-axis: the blue asterisks correspond to 

normal loads, while the green cross signs and red plus signs represent the attacked cases, with 
10% and 15% load shift respectively. Similarly,  

Figure 35 shows the scores computed using the SVM and Figure 36 shows the replication error of 
the neural network based detector. The performance of the detectors with 10% LS attacks is 
evaluated by plotting the ROC in Figure 37.  
 

 
Figure 34. Distribution of nearest neighbor distance for normal and attacked cases 

 

 

Figure 35. Distribution of SVM scores for normal and attacked cases. Note that for SVM a 
higher score (closer to 1) represents a belief that the data is normal, whereas a lower score (closer 

to -1) represents attacked data 
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Figure 36. Distribution of replication error from the replicator neural network detector for normal 

and attacked cases 

 
 

 
Figure 37. Receiver operating characteristic of the three detectors with 10% load shift attacks 

In the case of 15% LS, detecting the attacks becomes trivial, as shown in Table 9. For each detector, 
the values of missed detection and false alarm rate are shown for two different detection thresholds 
highlighting the near perfect performance of the detectors. Overall the results of the three detectors 
are very similar. An important difference in the case of the neural network-based detectors is the 
computational complexity. The training phase for our neural network required almost 6 hours to 
complete using the Matlab machine learning toolbox, while the training of the SVM on the same 
data took less than 1 minute. The nearest neighbor algorithm does not necessitate a training phase, 
but unlike the other two methods all the computing is done in real time by searching for the 



 

47 

minimum distance. This search requires the calculation of the distance from every entry in the 
historical data, but in our tests this operation only takes a fraction of a second. In terms of 
applications to real time detection, after performing the training of SVM and replicator neural 
network offline, all three detectors are able to analyze the loads much faster than the sampling rate 
of modern SCADA systems. 
 

Table 9. Performance of the detectors with 15% LS attacks 
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7. Concluding remarks 

In this project, the risk of well-coordinated sophisticated cyber-attacks on the operation of power 
systems has been studied. The scalable tools we developed to analyze the vulnerabilities of large 
scale systems have been validated on a realistic EMS platform; system operators can now use these 
algorithms to identify criticalities in real world applications. Moreover, the countermeasures we 
designed in the form of detectors which recognize counterfeit data can easily be verified and then 
implemented in any EMS as they rely on data which is already being collected at the control 
centers. Overall, this research benefit ISOs, utilities, and vendors by providing a holistic analysis 
of credible and consequential cyber-threats and developing attack-resilient detection and control 
algorithms via a realistic software EMS simulation platform. 
 
The grant that supported this project allowed us to demonstrate our work and our results to PSERC 
members as well as to the Department of Homeland Security and the National Science Foundation. 
There are a number of fundamental challenges that contribute to the ongoing debate as to how 
approach the problem of cyber-attacks against the electrical grid. For this particular project, it was 
critical to have a constant dialogue between academia and industry. The PIs attended meetings 
with the Industry Advisory Board in December 2016, May 2017, December 2017, and June 2018 
where feedback from industry experts was gathered and used to improve our work. Moreover, at 
these meetings, the students presented the latest results with multiple posters and demoed the 
attacks and countermeasures on the EMS platform we developed. Finally, PI Sankar is working 
with researchers at GE to further improve this work and extend it to many more applications. In 
fact, the methods and algorithms proposed here can be applied to all monitoring systems within 
the electric power systems hierarchy, from generation to transmission to all parts of the monitored 
distribution system. 
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1. Introduction 

1.1 Background 

The modern power grid is a complex cyber-physical system that is being increasingly integrated 
with smart sensors, advanced communication infrastructures, and sophisticated analytics and 
controls for achieving improved efficiency, reliability, and resiliency for the grid. Although the 
cyber-based technologies are among the key drivers of grid modernization, they also increase the 
number of digital access points the grid has and hence its attack exposure [1]. Recent literature and 
government documents have highlighted the need of secure networks for the SCADA based critical 
infrastructure like the power grid, which is increasingly becoming a constant target of cyber related 
attacks [2]. In recent years, several malicious cybersecurity incidents have been reported, by the 
Industrial Control Systems Cyber Emergency Response Team (ICS-CERT), target the industrial 
control systems [3]. The paper in [4] provides the detailed documentation related to the several 
cybersecurity incidents related to the power system infrastructures. Based on the analysis, it 
highlights the observations that the attacks are happening frequently, many of the attacks have 
disrupted normal operation and the attackers are operating in the stealth mode through malware 
attacks, social engineering, etc. Stuxnet, the incredible complex computer worm, which has 
targeted the industrial control system by modifying the programmable logic controllers, has 
affected more than 100,000 industrial devices by the year 2010 [5]. In October 2012, a power 
company reported a virus infection in the turbine control system which delayed the plant restart 
for multiple weeks [5]. The recent hack of Ukraine’s power grid is considered a sophisticated 
malware based coordinated attacks in the SCADA environment which caused shutdown of 7 110 
kV and 23 35 kV substations for three hours [6]. The incident is the first known and officially 
reported cyber-attack causing the power outages. Furthermore, several remote code vulnerabilities 
have been issued in the past, e.g., CVE-2017-7494, CVE-2016-7855, CVE-2014-4114 
vulnerabilities in windows operating system can allow backdoor access to the attacker [7]. In July 
2018, the Department of Homeland Security (DHS) has issued the warning alerts against the 
international threat actors who had infiltrated the industrial control system in the past that could 
have caused grid blackouts [8].  
 
The SCADA/EMS system provides essential functions as necessary through Wide-Area Protection 
and Control (WAPAC) applications for maintaining the stability and reliability of the power 
system. The WAPAC applications rely on state-of-the-art synchrophasor measurement technology 
and the existing Supervisory Control and Data Acquisition (SCADA) infrastructure to perform 
appropriate control action in real-time. NERC has classified the WAPAC as a critical asset with 
the cyber physical properties and any compromise and degradation in the scheme can affect the 
reliability and stability of the bulk power system [9]. Given the amount of conventional security 
measures deployed in the WAPAC which are also coupled with legacy infrastructure, it is not the 
matter of ‘if” but a matter of ‘when” regarding these existing wide area applications becoming 
exploited to the cyber-attacks. Therefore, there is a strong need to go beyond the traditional 
security solutions and develop more robust, efficient anomaly detection system (ADS) in the face 
of advanced, persistent adversaries. 
 
There exist the limited research works which address the vulnerabilities in the communication 
networks as well as possible cyber-attacks on WAPAC applications [10], [11]. Hahn et al. 
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performs the vulnerability assessment on SCADA communication protocols and, shows how the 
coordinated denial of service (DoS) and malicious tripping attack on the wide-area protection 
scheme can cause a generator outage while affecting the system’s transient voltage stability [10]. 
Aditya et al. presents the experimental evaluation of the data integrity attacks on wide area 
generation control using cyber-physical testbed [12].  Anurag et al. shows how the attacker can 
leverage publicly available information and apply graph theory-based approach to find the 
vulnerabilities in the cyber-physical system [13]. 
 
Although very useful, none of these works completely addresses the vulnerabilities due to insider 
and outsider threats. The outsider threat like malicious tripping attack can open circuit breakers at 
an inappropriate time, which can trigger the WAPAC controller to take unnecessary actions. 
Similarly, insider threat like phishing attack can cause sophisticated malware installation in the 
system, which can penetrate the communication network internally providing unauthorized access 
to the attacker from outside the network’s perimeter. Once the attacker gains access to the network, 
they can perform different classes of attacks like reconnaissance, denial of service, data integrity, 
etc. Although, it seems difficult to inject malware inside the control center without getting detected 
due to high security network, it can be propagated within geographically distributed devices 
installed in substations. Therefore, the in-depth analysis of security threats is required for the 
development of efficient Anomaly Detection System (ADS) against stealthy, sophisticated attacks. 
Based on the redundant measurements, known trails of system abnormal behavior during attacks 
and applying advanced machine learning techniques, it is possible to identify the anomalies in the 
context of WAPAC cyber physical security.   

1.2 Overview of the Problem 

In this project, our primary goal is to develop the efficient and robust Anomaly Detection System 
(ADS) to detect possible cyber-attacks which can have a significant impact on the grid stability in 
the context of WAPAC applications. Since, there exists no single technology that can optimally 
provide promising solutions to the existing multiple level security problems at the cyber-physical 
layer, we have leveraged different existing techniques including machine learning, behavior 
models and redundant measurements (SCADA, PMUs, historical data) to develop the next-
generation ADS which can overcome the limitations of conventional security solutions. 
Specifically, we have focused on decision trees, semi-supervised clustering-based machine 
learning, temporal behavior based models and multi-agent based architectures and methodologies 
in developing novel anomaly detection engines. Furthermore, we have also performed the impact 
analysis for possible cyber-attacks, including single and coordinated attack vectors, to comprehend 
their impacts on the system performances. As a proof of concept, we have implemented the 
proposed solutions through the experimental setup using the resources of PowerCyber CPS 
security testbed available at Iowa State University and evaluated their performances through the 
real-time testing.  

1.3 Report Organization  

The report is organized as follows: 
 

1. Section 2 talks about the Wide Area Protection and Control (WAPAC) and its two main 
components: Wide Area Protection (WAP), commonly known as Remedial Action Scheme 
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(RAS), and Wide Area Control, especially Automatic Generation Control (AGC). It also 
illustrates the possible attack surfaces based on the existing components of the generic 
architecture.  

 
2. Section 3 describes the various types of attacks which we have considered in WAPAC 

application. It discusses the attacks in detail and provides the mathematical expressions to 
understand the nature of attacks, their possible targets and how these attack vectors can be 
modelled or implemented in the control applications.   

 
3. Section 4 describes the different types of anomaly detection in the context of WAP scheme. 

Initially, it discusses about the generation rejection RAS, which sheds the generation to 
prevent overloading on the connected transmission lines. Based on the nature of attacks, 
either single or coordinated, machine learning, temporal behavior based model, and multi-
agent based architectures are proposed to detect different flavors of attacks. The proposed 
solutions are also implemented in cyber physical environment and tested in real-time 
platform. 

 
4. Section 5 presents the different types of the anomaly detection for Automatic Generation 

Control (AGC). We have considered two types of anomaly detection: model based ADS 
and machine learning based AGC. The model-based ADS leverages the historical data as 
the redundant measurement to create different types of bounds/rules to detect attacks. The 
machine learning based ADS deploys semi-supervised clustering algorithm for detecting 
cyberattacks. The performance of the proposed approach is also compared with other 
existing algorithms. 
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2. Wide Area Protection and Control (WAPAC) 

2.1 Introduction to WAPAC 

The WAPAC is the essential component of Energy Management System which leverages the state-
of-the-art synchrophasor measurement technology and existing SCADA infrastructure to provide 
the real-time protection and control of the power system. The WAPAC relies on the data sharing 
devices and communication network to provide the timely control operations, hence the security 
of appropriate cyber infrastructure is vital. WAPAC can be divided into its two constituent 
components: Wide Area Protection (WAP), and Wide Area Control (WAC). The WAP is also 
known as Remedial Action Scheme (RAS), or Special Protection Scheme (SPS), collects the 
system information over the wide geographic area and provides appropriate corrective actions to 
mitigate the large disturbances, and maintains the stability of the grid. Wide Area Control like 
Automatic Generation Control (AGC) relies on the SCADA infrastructure to balance the 
generation-load demand and limit the tie-line power flows between multiple Balanced Areas 
(BAs).  

2.1.1 Remedial Action Scheme (RAS) 

Remedial Action Scheme (RAS) is a protection scheme needed to secure the system during 
disturbances. Since the power system is not robust enough to accept components failures without 
subsequent response, small disturbances in the system may affect the voltage stability and may 
lead to cascading failure. It detects the physical disturbances like line outages, generator outages 
and later performs corrective actions like generation shedding, load shedding and other defined 
actions to maintain the system’s stability and reliability. According to the NERC definition of RAS 
scheme, corrective actions during abnormal conditions include changes in demand, generation 
(MW or MVAR) as well as system configuration to maintain power flows and system stability 
[14]. It is also allowed to perform system restoration (auto-reclosing) along with corrective actions 
to minimize impact on system and restoration efforts by system operators [14].  
 
As the number of PMUs installed in substation keep increasing, their applications related to wide 
area monitoring and protection are gaining more popularity. The synchrophasor based Remedial 
Action Schemes (RASs) are also implemented in the real world to perform autonomous corrective 
actions and maintain the system stability during the component failures. The PERC report in [15] 
talks about PMU based RAS schemes deployed in utilities and companies such as BPA, SCE, etc. 
The paper in [16] talks about the PMU based RAS for predicting the catastrophic events in the 
power system. 

2.1.2 Automatic Generation Control (AGC) 

The modern power system is divided into multiple Balancing Authorities or Balancing Areas 
(BAs) which are connected through bulk transmission lines and each BA is responsible for 
maintaining its regional generation and load demand to the maintain the system nominal frequency 
(60 Hz). Automatic Generation Control (AGC) operates at the control center and is the critical 
component of Energy Management System. It is the wide-area secondary controller, which is used 
for maintaining the system nominal frequency by balancing the generation with the load as well 
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as maintaining the tie line flows between the balancing areas [17]. The scheme employs Area 
Control Error (ACE) calculated from the frequency and tie line flow deviations every 2-8 seconds 
as shown in equation 2.1. In this equation, 𝛥𝛥𝑃𝑃𝑡𝑡𝑖𝑖𝑡𝑡 represents the difference in the tie line flows from 
the actual tie-line flows, 𝑃𝑃𝑟𝑟𝑎𝑎𝑡𝑡, and schedule tie-line power flows, 𝑃𝑃𝑠𝑠𝑎𝑎ℎ. Apart from the tie-line flow 
deviations, ACE also relies on 𝛥𝛥𝑓𝑓, which is the difference between the actual frequency, 𝑓𝑓𝑟𝑟𝑎𝑎𝑡𝑡 and 
nominal frequency, 𝑓𝑓𝑛𝑛𝑟𝑟𝑚𝑚, and the balancing authority bias β. In the final equation 2.3, 𝛥𝛥𝑃𝑃𝑙𝑙𝑟𝑟𝑟𝑟𝑙𝑙  is 
the load change in the BA, D is the frequency sensitivity of loads, and R represents the operating 
generator in the given power system. Finally, the control signal generated from the computed ACE 
value at the control center is sent to the actuator to control the generation. 
 

                                              tieACE P fβ= ∆ + ∆                                                     (2.1) 

                                               tie act schP P P∆ = −                                                            (2.2) 

                                      (1/ )
load

act nom
Pf f f
R D

∆
∆ = − = −

+∑                             (2.3)           

2.2 Cyber Attack Taxonomy 

                                                      

          
Figure 1.  Attack surfaces in generic WAMPAC architecture. 

Figure 1 shows the generic architecture of WAPAC, which consists of multiple components, 
including sensors, actuators and the high-level controller, which operates in the timely manner to 
maintain the power system stability. The power system data (currents, voltages, digital logs) are 
measured through the sensors and forwarded through the high-speed, wide-area communication 
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network to the WAPAC application in the control center. The controller takes appropriate 
corrective actions based on the system conditions by sending control signals to the actuator. The 
actuators consist of local protection elements and VAR control elements like FACTS and SVC for 
voltage related applications [11].  
 
The integrated cyber infrastructure with data sharing devices shows possible attack surfaces which 
can be exploited by attackers. Since the existing WAPAC applications are not designed 
conventionally to handle failures related to cyber-attacks, the unexpected cyber related 
disturbances can affect the normal operation of the WAPAC as well as the grid stability. For 
example, the attackers can compromise the sensors and actuators to perform the data integrity 
attacks which may cause unnecessary generation/load shedding. The attacker can also sniff the 
network packets or perform attack reconnaissance which can be later exploited for performing 
stealthy Man-in-the Middle or denial-of-service (DoS) attacks. It may cause loss of observability 
and controllability for the operator sitting in the control center. The attacker can also compromise 
the controller, operating at the control center, through the stealthy malware to disrupt the normal 
operation and perform severe attacks like generation altering attacks or unexpected load shedding. 
Also, the advanced, persistent attackers can leverage their extensive resources and expert skills to 
perform multiple attacks in a coordinated fashion, making it difficult to be detected by the 
conventional security methods.      
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3. Cyber Attack Vectors 

In general, the cyber-attacks can be classified into single and coordinated attacks. The single attack 
vectors include isolated attacks on the measurements, controls, wide-area communication and 
systems. It is performed by the attacker with limited skills, less capability and resources 
constrained. However, the coordinated attacks involve the combination of multiple attacks 
coordinated in time, and or space. It is performed by the advanced persistent attackers with the 
motive of performing severe impact on the system without getting detected. Since our main 
motivation is to develop the sophisticated anomaly detection, which can provide consistent 
performance irrespective of the nature of attacks, we have considered different types of cyber-
attacks either single or coordinated, irrespective of attacker’s intelligence, which can have an 
impact on the physical stability of the grid. 

3.1 Single Attack Classification 

3.1.1 Malicious Tripping 

The malicious tripping attack can be performed in multiple different ways. Attackers can perform 
the tripping attack by getting unauthorized access to the control center. At substation level, setting 
of physical relays can be altered to cause tripping of breakers. Attackers can also perform the attack 
through the SCADA communication network. In this work, we have implemented the tripping 
attack by eavesdropping the network packets going between the substation and control center. 
Once the attacker has internal access to wide area network, he/she can easily learn about the 
network packets used to trip the relays and eventually replay the tripping packet to perform the 
attack. 

3.1.2 Pulse Attack on Generator 

This generation altering attack vector involves periodically changing the input control signal sent 
to the generator. In this attack, a control signal is modified by adding the pulse attack parameter, 
λpulse, for a small interval (t1) and retaining back the original input for the remaining interval (T- t1) 
for the given time period (T).  
 

                                        
1
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i pulse
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=  
= − 

                                         (3.1) 

3.1.3 Ramp Attack on Generator 

This generation altering attack vector involves adding a time varying ramp signal to the input 
control signal sent to the generator. The ramp signal is decided based on the ramp signal parameter, 
λramp. 

                                                     *ramp i rampP P tλ= +                                                  (3.2) 
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3.1.4 Malware based Attack 

The term malware is defined for any software having malicious, malevolent intention. It can be 
installed in the controller through any openings (like email, USB, social engineering, etc.). The 
malware creates a backdoor once it is installed, which provides an access to the system from any 
outside network. After getting the unauthorized access, the attacker can read, modify or delete the 
logic program running for the controller operation on the system. 

3.1.5 Replay Attack 

The replay attack involves eavesdropping the network/data packets on the grid network and later 
injecting deceptive measurements disguised as genuine measurements to misguide the operator. It 
can be expressed mathematically, where, Xr represents the instant measurement sent to operator at 
time t. During the replay attack, Xr is modified to the deceptive/old measurement, xi, and, xn is the 
measurement during the normal operating condition without any attack. 
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3.2 Coordinated Attack Vectors 

The coordinating attacks are the combination of multiple attacks which are coordinating in time, 
and/or space to perform severe impact on the physical system as well as disguising their malicious 
actions from getting detected by the operator or conventional security solutions. Figure 2 shows 
how the single attacks can be leveraged to perform highly sophisticated attacks. The recent hack 
of Ukraine’s power grid is the real coordinated attack in the SCADA environment which caused 
shutdown of 7 110 kV and 23 35 kV substations for three hours. 
 

 
Figure 2.  Single and coordinated attacks in time and space 
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4. Anomaly Detection for Remedial Action Scheme 

4.1 Generation Rejection RAS 

There are different types of remedial action schemes deployed in the power industries. In this 
project, we have focused on the generation-rejection based remedial action scheme which sheds 
the generation during the line contingency to prevent the thermal overloading on the transmission 
lines. Figure 3 shows the generic architecture of generation rejection RAS. It polls the data using 
the sensors (relays, PMUs) at regular intervals in terms of relays status, the line flows and power 
output of the generator. Once the line contingency is detected through relays, the RAS controller 
is activated. It checks the operational transfer capacity (OTC) limit of the adjacent transmission 
lines directly connected to the generator. If the power flows in the connected, adjacent transmission 
lines exceed the defined OTC maximum limit (OTC_max limit), the RAS controller will be 
enabled. It will shed the required amount of generation as defined by the action table. We have 
considered the thermal limit of transmission lines while computing the OTC limit. We have also 
included the auto-reclosing scheme based on the NERC definition of RAS. Figure 3 also shows 
the possible attack surfaces which can be exploited by the attackers. More details are provided in 
the paper [18]. 
 

 
Figure 3.  Generation rejection RAS architecture 
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4.2 Machine learning based Anomaly Detection 

In this work, we have proposed the decision tree-based anomaly detection for detecting malicious 
tripping attack in the real-time. We have leveraged the phasor measurement units (PMUs) to build 
the decision tree rules with an assumption that the PMU measurements are secure. We have 
computed the differential features of voltage and current phasors of the sending and receiving end 
of transmission lines which are later deployed in building the classification model. Finally, we 
have implemented the proposed methodology using the cyber physical testbed on modified IEEE 
39 bus system and performed offline and real-time testing to evaluate its performance. More details 
of this work are provided in the project publication [9].  

4.2.1 Decision Tree (Machine Learning) based Proposed Methodology 

The Figure 4 shows the proposed methodology for ADS to develop the intelligent RAS, which can 
overcome the limitation of the conventional RAS by predicting the malicious and legitimate 
behavior of relays. In this case, we are considering the malicious relay tripping attack as the main 
attack vector and developing the ADS to detect and distinguish it from the normal tripping during 
the line fault. Initially, it collects the data from PMUs periodically through the analog and phasor 
measurements, and during the tripping of relays, it checks with the anomaly detection engine 
(ADE) to predict the malicious and normal tripping. In case of normal tripping, it sheds the  

 
Figure 4.  Proposed methodology for ADS in Remedial Action Scheme (RAS). 
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Table 1.  Differential PMU features 

Vars Features Description 
X1 

VMs − VMr 
Positive sequence voltage magnitude 
(VM) difference 

X2 
∂(VMs − VMr)/ ∂t 

Rate of change of positive sequence VM 
difference 

X3 
VAs − VAr 

Positive sequence voltage angle (VA) 
difference 

X4 
∂(VAs − VAr)/ ∂t 

Rate of change of positive sequence VA 
difference 

X5 IMs – IMr Positive sequence current magnitude (IM) 
difference 

X6 ∂(IMs – IMr)/∂t Rate of change of positive sequence IM 
difference 

X7 (IAs – IAr) Positive sequence current angle (IA) 
difference  

X8 ∂(IAs – IAr)/∂t  Rate of change of positive sequence IA 
difference 

 
generation as usual based on the predefined action table, however, when the malicious tripping is 
detected, it recloses the tripped relays to avoid overloading on other lines instead of shedding the 
generation and load. It also sends the alarm alertness to the operator to provide situational 
awareness. The colored box of Figure 4 shows the different steps involved in developing the ADE 
in terms of input selection, building, training and testing of DT. Table 1 shows 8 differential 
features which we have extracted for building the classification model where subscripts s and r 
represent the sending and receiving end of the transmission lines. 

4.2.2 Experimental Setup and Case Study 

Figure 5 shows the experimental setup for implementing the attacks as well as testing the proposed 
methodology in offline and real-time testing mode. The modified IEEE 39 bus system is modeled 
in ePHASORsim and simulated in real-time digital simulator, OPAL-RT. The simulator is 
integrated with two physical relays which are connected to the remote terminal unit (RTU) inside 
the substation and are monitored, controlled by the control center. For attack implementation, we 
have captured the tripping packet going from the control center to the substation RTU using 
Wireshark and then replayed the captured packet to the remote terminal unit (RTU) using python 
script to trip the relays. We have used virtual PMUs modeled inside the OPAL-RT for generating 
phasors at 60 samples per second. The SEL 2407, the satellite synchronized clock, is providing 
time synchronization to the virtual PMUs in the simulator. The virtual PMUs are sending phasors 
and their differential features using IEEE C37.118 protocol to the iPDC, the phase data 
concentrator, in real-time. The iPDC is saving data to the MySQL database. Initially, the generated 
database is used for training and building the decision tree and further performing offline testing 
for different cases using rattle. During the real-time testing, the RASc is running in the python 
script which pulls the data coming from the simulator to the MySQL database in terms of line 
flows, relays status and differential PMU features. When the line is out, it checks with the decision 
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tree rules to identify events and performs control action by sending control signal directly to the 
simulator using DNP3 OPC server client protocol. 

 
Figure 5.  Experimental setup for the proposed methodology. 

We have employed the modified IEEE 39 bus system which is divided into two major areas. The 
outlined Area1 is the primarily generation area which is supplying power to the rest of the system 
through the tie lines 15-16 (L15-16) and 16-17 (L16-17). To prevent thermal overloading on line 
L15-16, during the line outage L16-17, RASc sheds the generation at bus 35 and the equal amount 
of load is shed at bus 18 to maintain the load generation balance. We have computed the differential 
PMU features using bus 16 and 17 as sending and receiving end. We have created miscellaneous 
operating points through generation and load scaling. The generation at bus 35 is varied from 610 
MW to 700 MW and load is varied from 118MW to 208 MW in equal step increase of 10 MW to 
maintain the generation and demand balance. For each operating point, we have simulated a 3 
phase to ground fault followed by line tripping as normal tripping event and sudden line outage as 
a cyber attack event at line 16-17. We have varied the duration of the fault with mean values of 6 
cycles and 0.667 cycles standard deviation. The fault location distance factor is varied from 0 to 1 
along the length of line with step size of 0.1, excluding the limits (0 and 1). Total number of fault 
cases are 50 fault durations * 9 fault locations *10 operating points = 4500 cases. We have also 
simulated 10 line outages as the tripping attack, one for each operating point, and finally, total 
4510 are simulated for the proposed method. 
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4.2.3 Results and Discussions 

4.2.3.1 Offline and Real-time Testing 

 
Figure 6.  Generated decision trees (DT) for 60% training data (case 4) 

 
 

Table 2. Training and testing for different datasets 

Cases Training Testing Accuracy Processing 
Time  

1 20 80 98.6 0.01 
2 40 60 98.4 0.01 
3 50 50 99.6 0.02 
4 60 40 100 0.02 
5 80 20 100 0.02 

 
Table 2 shows the offline performance of the decision tree for different test cases in terms of 
accuracy and the processing time of training the model. It is obvious to note that the 60% training 
of data is enough to achieve 100% accuracy.  Figure 6 shows the generated decision tree rules for 
60% training data sets. It can be observed that only 2 features are sufficient to generate the detected 
rules.   Figure 7 (a) and (b) shows the performance of the intelligent RAS during real-time testing 
in the cyber physical testbed. In this case, the intelligent RAS has detected the tripping attacks and 
reclose the relay in a short time span instead of shedding the generation. 
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Figure 7.  Real-time testing of intelligent RAS 

4.3 Model based Anomaly Detection 

In this work, we have proposed the temporal behavior-based ADS to detect the generation altering 
attacks in the context of RAS. We have implemented the proposed IDS using publicly available 
IDS tools Snort, BRO and compared their performance in terms of detection rate and alert latency 
in the cyber physical environment. More details of this work are provided in the project publication 
[7]. 

4.3.1 Proposed Approach and Implementation 

4.3.1.1 Cyber Attack vector 

We have implemented the coordinated attacks which involve installing malware on the RAS 
controller that closes the legitimate RAS program and run the malicious program. The malicious 
program initiates the generation altering attack through the ramp attack that involves slowing 
reducing the generation making it difficult to be detected by the conventional IDS. In order to 
disguise the ramp attack from getting detected, the attacker is also sending false measurement 
updates (replay attack) to the operator sitting in the control center, as shown in Figure 8.  
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Figure 8.  Steps involved in creating coordinated attacks on RAS. 

Since the attacker has hacked the controller, it is reasonable to say that the implemented attack is 
difficult to be detected using access control and protocol whitelisting IDS. Therefore, we have 
proposed a behavior role-based IDS based on the timing of control signal packets which will be 
discussed in the next subsection.    

4.3.2 Proposed Approach for IDS 

We have proposed the network-based ADS which monitors the network packets when the 
controller sends the control signals to the actuators in the power system as shown in Figure 9. The 
main notion behind this approach is that the controller provides the corrective actions during 
specific circumstances like line contingencies/ faults and the frequency of network packets during 
such events is comparatively low as compared to frequency of packets during the ramp attacks.  

 
Figure 9. Generic architecture of behavior-rule based ADS (BRADS). 
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Therefore, based on the in-depth analysis of network packets, we can detect the attacks by 
assigning the threshold values on the number of control signal packets sent from the controller to 
the actuators. We have tested our proposed approach in real-time for DNP3 protocol using IDS 
tools Snort and BRO. Figure 10 shows the proposed approach which can be divided into 5 stages: 
 

1. Network-packet sniffing   
2. Protocol packet filtering 
3. Learning phase 
4. Rules defining phase 
5. Real-time detection. 

In stage 1, the network traffic is monitored when the controller is sending control signals to the 
actuator. In stage 2, the normal DNP3 packet is filtered based on the IP address and port numbers. 
In stage 3, DNP3 function codes are selected. Finally, in stage 4 and 5, the timing-based rule is 
defined for the number of function codes based on the packet learning. In stage 4, 𝑇𝑇𝑛𝑛 and 𝑇𝑇𝑛𝑛−1, 
represent the time of the 𝑛𝑛𝑡𝑡ℎand (𝑛𝑛 − 1)𝑡𝑡ℎ packets where n is the positive integer (n > 0). 𝑇𝑇𝑡𝑡 is the 
inter-arrival time between the two consecutive packets. We have defined the time threshold, 𝑇𝑇𝑡𝑡ℎ𝑟𝑟𝑡𝑡𝑠𝑠, 
based on the statistical analysis of the network traffic during the normal disturbances and cyber- 

 
Figure 10.  Proposed intrusion detection engine for the ramp attack. 
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attacks. If the time difference between the two packets, 𝑇𝑇𝑡𝑡, is less than the defined threshold, 𝑇𝑇𝑡𝑡ℎ𝑟𝑟𝑡𝑡𝑠𝑠, 
the alert messages are issued to the operator. In this work, we have assigned the value of 0.3 sec 
for two consecutive normal DNP3 packet based on the expert knowledge and literature documents. 

4.3.3 IDS Implementation 

We have developed and implemented the proposed intrusion detection system by utilizing the 
network-based IDS tools, Bro and Snort. Figure 11 shows the alerts examples in the log files of 
Snort and Bro IDS.   

 
Figure 11. Alert examples in the log files of Snort and Bro IDS. 

4.3.4 Experimental Setup 

Figure 12 shows the experimental setup for the attack-detection experiment using the testbed. We 
have modeled the modified IEEE 9 bus system on the real time digital simulator (RTDS). The 
distributed remedial action scheme is implemented in the system where each RASc is operating 
for a single generator.  The controller, RASc2, operating for the generator 2, is communicating  

 
Figure 12. Experimental setup for attack implementation and detection 

05/16-19:48:53.33 [**] [1:4444001:1] SCADA_IDS: DNP3 – ramp attack 
[**] [Priority: 1] {TCP} *.1.200.145:14612 -> *.1.0.38:20000 (Snort) 
 
*.1.200.145 did more than 2.0 Function ramp attack! in 0m0s and total is 2 
and time is 1495044882.845699 (Bro) 
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through the DNP3 protocols to the simulator. It collects data in terms of relay status, line flows 
and power generation at every 0.125 second and takes corrective actions by shedding different 
level of generations to avoid thermal overload during the contingency. For simplicity, we have the 
considered the overhead limit to be 1.5 times of the initial line flows. In the attack scenario, as 
shown in blue dashed arrows, we have installed the malware (Trojan Horse), written in python 
script for Windows hosts, in RASc2 which provides unauthorized access to the attacker. Once 
malware is installed, the attacker transfers the fake RAS script to the affected controller using 
Cryptcat. The Cryptcat is a Unix utility which allows data/file transferring in encrypted form. In 
the next step, the attacker closed the original RAS script and malicious script is executed. The 
malicious script initiates the ramp attack on the generator while sending fake updates to the control 
center operator. For attack detection, IDS tools Snort and Bro are running in Kali Linux VMware 
which are listening the ongoing traffic between the controller and RTDS. 

4.3.5 Results and Discussions 

4.3.5.1 Performance Evaluation of IDS 

We have evaluated and compared the performance of Bro and Snort IDS in terms of detection rate 
and latency in the alert packets. Figure 13 shows the detection rate (a) and the average latency (b)  

 
Figure 13.  Detection rate (a) and average latency (b) of alert messages for Bro and Snort IDS. 

 
for different sizes of alerts packets. The alert packets are varied from 21 to 2000 packets, and it 
can be observed that the Bro IDS has performed consistently better with a detection rate greater 
than 90%. The Snort IDS’s detection rate varies sporadically from 93.5% to 75%. For computed 
average latency, the constant delay of 0.6 s is observed in the most cases of Snort IDS. The Bro 
IDS has performed slightly faster with the maximum average delay of 0.58 sec and minimum of 
0.534 sec. 

4.4 Multi-Agent based Anomaly Detection 

In this work, we have proposed the multi-agent based RAS architecture to detect the stealthy 
coordinated attacks. We have proposed the two-level hierarchical architecture where distributed 
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local controllers, working as local agents, are operating in different zones/ areas and the overseer, 
the central agent, receives the local and random measurements from the local controllers and 
identifies the compromised controller based on the online anomaly detection algorithm. For 
developing the anomaly detection, local and random measurements are compared, and the 
measurement errors are computed. Once the measurement error exceeds the defined threshold, the 
overseer performs the validation checks and the malicious controller is detected based on the two-
step verification. We have evaluated its performance through the online testing on the IEEE 39 
bus system in the cyber physical environment. More details of this work are provided in the project 
publication [5].   

4.4.1 Coordinated Attack Vectors 

We have considered the coordinate attack vectors which include installing the malware on local 
controller, disabling the original program and running the malicious code, tripping the line 
maliciously and finally executing the data integrity attacks (pulse, ramp) through the malicious 
code on the generator while sending false measurements to the operator. Overall, the coordinated 
attacks involve malware attacks, malicious tripping attacks, generation alteration attack and replay 
attack in the sequential manner. 

4.4.2 Proposed Architecture and Methodology 

4.4.2.1 Proposed Multi-Agents based Hierarchical Architecture 

Figure 14 shows the proposed MAS based hierarchical architecture for the distributed RAS 
scheme, where each controller is operating as a local agent at the substation, and the overseer, the 
central agent is periodically monitoring the local agents while operating at the control center. The 
local agent is working as a substation-based protection controller which is responsible for 
monitoring and protection of the associated zone independently. It collects information from the 
local sensors (PMUs, relays) deployed in the specific zone and performs corrective actions through 
the actuators (MW, MVAR control) to mitigate different power disturbances. Apart from the local 
state information, each local agent is also collecting measurements from the other zonal sensors as 
shown in the figure to introduce the redundancy in the system through the client-server 
communication. Each local controller forwards the collected local measurements to the overseer 
along with the other zone measurements in the dynamic, random manner. The overseer collects 
the local and random measurements for the system states and detects anomalies using the proposed 
data-driven anomaly detection algorithm which we have discussed in the next subsection.    
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Figure 14. Overview of the proposed architecture for multi-agent RAS. 

 
 

Table 3. Roles assigned to different agents 

Roles assigned Agents 

 Receive updates from RAScs 
 Send Check commands to RASc 
 Alert the operator during cyber attacks 

overseer 
 (Central) 

  Receive System measurements 
 Take corrective actions 
 Send updates to overseer 

RASc  
(local) 

 
We have proposed the two-level hierarchical architecture where central and local agents are 

performing their separate respective functions as shown in the action  
Table 3. We have assigned three different roles/ functions to the overseer, which include receives 
updates from the local RAScs, sends Check command to the RASc during the measurement error, 
and alerts the operator whenever the cyber-attacks are detected. The three roles assigned to the 
local RASc are receiving system measurements in terms of relays status, the line flows, generator 
output, taking corrective actions as needed during the disturbances, and sending periodic updates 
to the overseer with local and dynamically changing random measurements.     
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Figure 15. Anomaly detection methodology to detect the compromised RASc. 

4.4.2.2 Proposed Anomaly Detection Algorithm 

Figure 15 shows the proposed anomaly detection methodology running at the overseer. The 
overseer periodically updates the measurements coming from the local agents and computes the 
state measurement error, 𝑛𝑛𝑟𝑟𝑖𝑖𝑗𝑗(𝑡𝑡), of the generation, (𝑃𝑃𝑃𝑃𝑖𝑖), and line flows, (𝑃𝑃𝑙𝑙𝑖𝑖(𝑡𝑡)), from the  ith 
zone, [𝑃𝑃𝑃𝑃𝑖𝑖�𝑥𝑥𝑙𝑙𝑖𝑖(𝑡𝑡)�, 𝑃𝑃𝑙𝑙𝑖𝑖�𝑥𝑥𝑙𝑙𝑖𝑖(𝑡𝑡)�] and jth zone, [𝑃𝑃𝑃𝑃𝑖𝑖�𝑥𝑥𝑟𝑟𝑗𝑗(𝑡𝑡)�, 𝑃𝑃𝑙𝑙𝑖𝑖�𝑥𝑥𝑟𝑟𝑗𝑗(𝑡𝑡)�] at a particular instant t. 
For the computed error, 𝑛𝑛𝑟𝑟𝑖𝑖𝑗𝑗(𝑡𝑡), i and j represents the local and outside zones at time t. The 
parameter δ is defined as the error threshold value. When the computed error exceeds the defined 
threshold, check command, 𝐶𝐶ℎ𝑘𝑘(𝛾𝛾, 𝑖𝑖),  is sent to the third controller, RASck, where k is selected 
randomly from the remaining N-2 controllers which are not involved in the error conflict. It is 
required to perform the range validation checks based on the error computed from the kth 
controller’s measurement of the ith zone with local ith  controller’s (RASci) measurements, as 
defined by 𝑛𝑛𝑟𝑟𝑖𝑖𝑘𝑘(𝑡𝑡). If the computed error, 𝑛𝑛𝑟𝑟𝑖𝑖𝑘𝑘(𝑡𝑡), exceeds the given threshold, the overseer 
declares that the RASCi is compromised and alert is sent to the operator. It is important to note 
that the overseer is performing two-step verification to successfully detect the compromised RASc. 
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4.4.3  Experiment Setup and Case Studies 

Figure 16 shows hardware-in-the-loop based experimental set-up for the attack implementation. 
We have modeled the modified IEEE 39 bus in ePHASORsim and simulated in the OPAL-RT, 
real time digital simulator. Figure 17 shows the topology of the system and it is divided into three 
different zones or areas where decentralized RAS is implemented for each zone to prevent the 
thermal overloading during line outages. We have implemented the coordinated attacks on the 
RASc2 which is collecting measurements from the simulator. The simulator is integrated with two 
physical relays, as representing line L16-21, L16-24, which are connected to the remote terminal 
unit (RTU). For successful attack completion, we install the malware, Trojan Horse, written in 
python script (step1), which provides the backdoor connection to the attacker’s computer (step 1). 

 
Figure 16. Experimantal set-up for attack implementation in PowerCyber Lab. 

Next, we close the python program running for legitimate RASc and execute the python program 
for malicious RAS (step 2). Afterwards, the malicious tripping attack is performed by replaying 
the captured tripping packet on relay 1 which disconnects the line 16-21 to trigger the RAS (step 
3). Finally, the attacker initiates the pulse/ ramp attack on the generator 35, while sending false 
measurement updates of generation to the overseer, running at the control center to hide the 
malicious action (step 4). Once the attack is successfully performed, we have collected the system 
data with timestamps from the simulator which is used later for the detection testing. 
Figure 18 shows the MAS based online anomaly detection topology for 3 zones/ areas 
decentralized RAS where, each controller receives the list of local and random measurements. 
Each RASc is centrally monitored by the overseer. The RASc2 is operating in the zone 2, which 
polls the local zone measurements in terms of generator, G35, and line status, L16-21 and L16-24. 
It also polls the outside zone’s measurements from zone 1 and zone 3 in terms of generators, G38, 
G32, and line statuses, (L26-29, L26-28), (L6-11, L13-L14) as shown in the figure.  
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                        Figure 17. Decentralized RAS enabled modified IEEE 39 bus system. 

 
Figure 18. Online anomaly detection topology for the 3 zones RAS. 
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For the detection testing, we develop the MAS using python script where each RASc is sending 
their measurement updates every 4 second to the overseer. Initially, the system data with 
timestamps is stored in the python script of each controller, which initiates interaction with the 
overseer at the same time. The overseer is processing their data to the online anomaly detection 
algorithm which is also running in the python script. Once the anomaly is detected, an alert is 
issued to the operator. 

4.4.4 Results and Discussions 

4.4.4.1 Performance Evaluation 

Figure 19 (a) and (b) show the online performance of the proposed algorithm. The proposed 
algorithm is evaluated in terms of detection and latency cycles during the pulse and ramp attacks. 
It can be observed that pulse attack is detected faster than the ramp attack because the pulse attack 
causes the sharp deviation from the initial state as compared to the ramp attack for the large 
detection threshold. For the small detection threshold, number of cycles to detect both attacks are 
almost same. For the average latency, it can be observed that we are able to successfully detect 
both attacks with an average delay of 0.389 and a maximum delay of 1.25 cycles. 
 

 
Figure 19. Detection Cycles (a) and Latecy cycles (b) for pulse and ramp attack. 
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5. Anomaly Detection for Automatic Generation Control  

5.1 Basics of AGC 

AGC is a wide area control operation that is used for maintaining the system nominal frequency 
by balancing the generation with the load and limiting the tie line flows between the balancing 
areas. We have considered two types of AGC schemes: Conventional AGC, and Proportional 
Integral Derivative (PID) AGC. Both schemes employ Area Control Error (ACE) calculated from 
the frequency and tie line flow deviations every 2-8 seconds using equation 5.1, where, 𝛥𝛥𝑃𝑃𝑡𝑡𝑖𝑖𝑡𝑡 
represents the difference in the tie line flows from the actual and schedule tie-line power flows, 
𝛥𝛥𝑓𝑓 represents difference between the actual frequency, 𝑓𝑓𝑟𝑟𝑎𝑎𝑡𝑡, and nominal frequency, 𝑓𝑓𝑛𝑛𝑟𝑟𝑚𝑚, and β 
is the balancing authority bias. 

                                                     tieACE P fβ= ∆ + ∆                                               (5.1) 

5.1.1 Conventional AGC 

This is the traditional method of AGC in which the ACE values (E), are consecutively added to 
generate the control signal. The control input, C(t), at time ‘t’ is given by equation 5.2. 

                                        0 1( ) ........ tC t E E E= + + +                                             (5.2) 

5.1.2 Proportional Integral Derivative (PID) ACE based AGC 

The traditional method can be rewritten in the PID form as a discrete PI type controller with both 
Kp and Ki parameters are set to 1. We can consider the current ACE as the proportional component 
and the sum of previous errors as the integral component. 

                                 0 1 1( ) 1* 1*( ......t tC t E E E E −= + + +                                (5.3) 

By using variable parameters and including a derivative component consisting of the difference 
between the current and its previous error, a PID form of AGC can be constructed as shown in 
equation 5.4. 

       0 1 1 1( ) * *( ...... ) *( )p t i t d t tC t K E K E E E K E E− −= + + + + −      (5.4)          

5.2 Model based Anomaly Detection 

We have proposed the model-based anomaly detection and mitigation algorithms for the AGC 
operation while considering different percentages of renewable integrated with the bulk power 
system. In this work, we have deployed two types of AGC: Conventional AGC and Proportional 
Integral Derivative (PID) based AGC. The ramp attack is implemented on both types of AGC with 
various levels of renewable penetration. Finally, the attack detection and mitigation algorithms are 
tested in various scenarios to evaluate the ADS performance and comprehend the impact of the 
mitigation algorithm on the system during the normal and N-K contingencies. The proposed 
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algorithms are tested in the experimental environment using the PowerCyber CPS security testbed 
at Iowa State University. More details of this work are provided in the project publication [6].   

5.2.1  Cyber Attack Vector 

5.2.1.1 Ramp Attack 

During the ramp attack, a constant ACE value is injected to the generator, which causes the 
constant increase or decrease of the generator output and, eventually leads to a constant rise or 
drop in the system frequency. The equation 5.5 shows the generator control signal after the attack 
has started, where, 𝐶𝐶(𝑡𝑡) is the control signal before attack, 𝐸𝐸𝑟𝑟 is the attack magnitude, and 𝑡𝑡𝑟𝑟 is 
the attack duration. 

                                          ( ) ( ) *a a aC t t C t E t+ = +                                               (5.5) 

5.2.2 Attack Detection and Mitigation 

This subsection discusses about the attack detection and mitigation algorithm that can detect the 
attack at the initial stage and take proper mitigation to prevent the attack from affecting the system 
beyond the certain limits. Figure  shows the flow chart for the proposed algorithm. Once the ACE 
and frequency values are obtained for each cycle, two conditions are checked:  
 

 
                       Figure 20. Algorithm for attack detection and mitigation. 

 



 

27 

1. The values are checked to be within the pair of bounds. 
2. The sign of ACE value is checked with the respective frequency value to ensure that the 

computed ACE value is utilized to improve the frequency conditions. 

In case of violation of either condition, the ACE value is dropped and substituted with null (0). By 
this a ramp attack would be stopped immediately during the excursive ACE values as defined by 
condition 1, or after the first few cycles when condition 2 would not be satisfied, if the attack value 
was within limits. We have determined the ACE bounds by leveraging the data used by regulators 
for determining the performance parameters of the AGC (viz. Control Performance Standards - 
CPS1 and CPS2) and the Balancing Authority ACE Limits (BAAL) [19]. The data contains one-
minute average values of frequency and ACE for a total period of 12 months which is updated every 
month. We have considered the bounds for each frequency range by selecting the largest ACE 
values observed in that range in the past 12 months. Figure 21 shows the proposed methodology 
for computing the ACE bounds. It assumes that the generating stations have access only to 
frequency values and tie-line flow values are not used as a secondary parameter. 

 
Figure 21. Procedure to determine ACE bounds for mitigation. 

5.2.3 Experimental Implementation 

We have performed the experiments on the modified IEEE 39 bus system, simulated in OPAL- RT. 
Figure 22 shows the system which is divided into two Balancing Authorities (BAs). Generators 1 
& 8, and 2 & 3 are involved in the AGC operation in BA1 and BA2 respectively. We have modified 
the model to simulate renewable energy sources. Generators 4, 5 and 9 are converted to renewable 
plants successively for simulating the increasing penetration of distributed sources. In order to 
simulate the variation in the wind turbine output, the individual machines in the plants were 
simulated with an input value subjected to 1% fluctuation. 
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Figure 22. IEEE 39 bus model. 

5.2.4 Performance Evaluation 

5.2.4.1 Attack Analysis 

The ramp attack was conducted on two cases - attack on one ACE and two ACE values, for four 
different conditions of renewable penetration 0%, 10%, 20% and 30%. The increase in renewable 
penetration has two consequences on the grid: 

 
Figure 23. Attack comparison for different levels of renewables. 
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1. Fluctuating output power leading to frequency fluctuations 
2. Reduction in system inertia leading to faster frequency response and higher rate of 

change of frequency (ROCOF) 

The ACE value was attacked and replaced with -5 MW for a duration of 1 minute (60 seconds 
or 15 AGC cycles) causing a drop of 75 MW of generation. When both the ACE signals are attacked 
there is a drop of 150 MW. From the plot shown in Figure 23, it can be inferred that with increase 
in renewables, due to reduction of inertia, the ROCOF is higher and the drop in frequency due to 
the attack is faster. The attack was then repeated for the same scenarios with PID based AGC. Due 
to the reduced control signal used by this algorithm, by the end of 2 minutes the reduction in 
generation was only 40 MW for attack on 1 ACE, and 80 MW for attack on 2 ACE values. This 
results in lesser frequency drop as shown in Figure 24. Thus, it can be inferred that attack on PID 
based AGC has lesser impact. The results obtained during the attack analysis are summarized in  

Table 4. 
 

 
Figure 24. Attack comparison between Conventional & PID based AGC. 

Furthermore, the study was also performed on the performance of the PID based AGC as compared 
to the conventional AGC. Based on a two minutes observation of the two algorithms for the four 
cases of renewable penetration, it was observed that for the considered system conditions,  
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Table 4. Attack impact analysis 

 
Renewable  
Penetration 
     (%) 

                                               
                                     Frequency Drop (Hz) 

 
Attack on 1 ACE 

                 
                Attack on 2 ACE 

Conventional 
AGC 

PID based AGC Conventional 
AGC 

PID based AGC 

Generation drop 
= 75 MW 

Generation drop = 
40 MW 

Generation drop = 
150 MW 

Generation drop 
= 80 MW 

0 
10 
20 
30 

0.03 
0.036 
0.044 
0.055 

0.016 
0.016 
0.016 
0.028 

0.059 
0.07 
0.083 
0.106 

0.033 
0.036 
0.044 
0.06 

 

 
Figure 25. Performance comparison between Conventional & PID based AGC. 

PID base AGC algorithm provides a satisfactory performance that is as good as the conventional 
algorithm, since it manages to maintain the steady state frequency error within the frequency 
regulation requirements (18 mHz) as shown in the Figure 25. 
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5.2.4.2 Defense Analysis 

The ramp attack was conducted for the same attack magnitude and duration with the mitigation 
algorithm in place for both the AGC methods, with varying conditions of renewables, and with 
attacks on single and multiple ACE values. It was observed that the attack was prevented during 
the AGC cycles for which condition 2 was not satisfied. Condition 1 was not violated as the attack 
magnitude was small. This resulted in the possibility of the attack being rarely successful and the 
successful ones having negligible impact. Figure 26 shows the impact of the attack on both ACE 
values for conventional AGC with the mitigation implemented. 
 

 
Figure 26. Effect of mitigation algorithm on attack. 

5.2.4.3 Effect of Mitigation on AGC Performance 

From the algorithm, it is evident that an alert would be generated whenever the ACE signals have 
opposite signs. This will result in a high incidence of false positives as this condition is observed 
most of the time. So, it is important to ensure that the normal AGC operation is not adversely 
affected by the mitigation. The AGC operation was simulated with the mitigation in place for both 
AGC algorithms and different conditions of renewables. Due to frequency being the primary factor 
in the algorithm, the system tends to restore frequency within the permissible errors of 18 mHz 
without any hindrance, despite the false positives. To further validate AGC performance, an analysis 
was conducted by means of a step change in two of the loads. One load in BA1 and one     in BA2 
were subject to an increase and decrease of 50 MW respectively as shown in Figure 27. In this case, 
both the BAs would need to achieve a ramp up and ramp down in their generation by an equal 
amount, while being allowed to do only one at a time and needing longer time for restoration. It 
was observed that the system performance was satisfactory with the mitigation algorithm in place. 
The upper plot in Figure 27 shows the frequency restoration. Even though the frequency 
performance appears to be inferior, there is a very less possibility   of violation. This seemingly 
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inferior performance is because at any instant, the machines in the grid are allowed to either ramp 
up or down, but not both. However, because of condition 2 in the mitigation algorithm, the 
frequency deviation in any direction will always be facing an aggressive opposition. This would 
cause relatively greater frequency swings as compared to the system without mitigation. From the 
lower plot, it was observed that the tie line restoration occurs at fairly the same duration with or 
without mitigation. In general, it shows the performance of detection and mitigation algorithm. It 
is observed that the system performance was satisfactory with the algorithm in place. The upper 
plot in Figure 27 shows the frequency restoration during the ramp attack. The system frequency 
restores quickly, which has less possibility of violations. The lower plot shows that the tie line 
restoration occurs at fairly the same duration with or without mitigation. 

 
                                Figure 27. AGC performance with mitigation algorithm. 

5.3 Machine Learning based Anomaly Detection 

We have proposed the machine learning based ADS for abnormal generation controls induced by 
different single cyber-attacks. Specifically, we have proposed the semi-supervised clustering 
algorithm with Hierarchical Density based Spatial Clustering of Application with Noise 
(HDBSCAN) for ADS against the generation control under ramp attack, switching attack, AGC 
integrity attacks, etc. We have evaluated the proposed algorithm through the experimental setup 
and shows that the proposed algorithm provides better detection accuracy than K-means clustering. 
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Furthermore, it can also provide detailed classifications of the normal and abnormal generation 
controls as well as among the various anomaly scenarios. More details of this work are provided 
in the project publication [8]. 

5.3.1 Abnormal Generation Control Detection 

1.3.1.2 Overall Anomaly Detection Process 

Figure 28 shows the overall process of the proposed ADS. Initially, we have collected the sample 
data which is processed through the metric calculation module, and then a tuple of 3 metrics is 
formed as one data instance. The three metrics compute the data instances as input features which 
are sent to the on-line detection model to detect any abnormal generation control. We are also 
storing the data instances in the database. The proposed Semi-supervised clustering will be carried 
out off-line on request to complete the training process and, on-line model will be updated 
accordingly.  

 
Figure 28. Generation control just before AGC operation. 

5.3.2 Semi-Supervised Clustering with HDBSCAN 

Reference [20] provides the detailed discussion about HDBSCAN for semi-supervised clustering. 
It shows how to utilize the labeled data instances as constraints at the instance level to find the 
optimal clusters, especially to list the pairs of points that should stay in the same cluster. When the 
pairs of points are not in the same cluster, clusters with the least constraint violations are selected. 
In this work, we have come up with a clustering methodology as depicted in the Figure 29. The 
proposed algorithm recursively finds the clusters in the manner of divide and conquer. 
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Figure 29. Proposed algorithm for semi-supervised clustering. 

5.3.3 Experimental Results 

5.3.3.1 Introduction of the Datasets 

Initially, we have collected the synthetic dataset based on the IEEE 39 bus system [20]. The system 
is divided into 3 BAs as shown in Figure 30. The BA2 (Area 2) is the main area under investigation. 
The generator 4, G4, in BA2 is modeled as a primary control unit and the generator 5, G5 and 
generator 6, G6, as secondary control units. We have only considered G5 as the main target for the 
cyber-attacks. We have simulated six different scenarios that include 1) normal events occur inside 
of BA (nor in), 2) normal events outside BA (nor out), 3) modify G5 ACEs to negative values (flip 
attack), 4) modify G5 ACEs to a wrong constant (constant or scaling attack), 5) keep ramping a 
generation unit up or down after an intrusion (ramp attack), 6) switch between two different 
generation levels continuously after an intrusion (switching attack). The dataset is summarized in 
Table 5, and, also depicted in Figure 31. 

Table 5. Training and testing datasets for AGC 

Cases Training Testing 

Labeled  Unlabeled 
Nor in 102 - 73 

23 
13 
20 
12 
16 

       Nor out 91 - 
Flip attack 279 - 

Constant attack 275 - 
Ramp attack 12 - 

Switching attack 14 - 
Total 773 470 157 

 



 

35 

 
Figure 30. IEEE 39 bus model divided into 3 Bas. 

   

Figure 31. Training datasets. 

5.3.3.2 Clustering with K-means 

K-means clustering was applied in [21]. The result is simply echoed here as a baseline for the new 
clustering algorithm. Figure 32 shows the final clusters obtained, and Table. II of Figure 34 is the 
confusion matrix for the test. 
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Figure 32. Clustering results with K-means. 

5.3.3.3 Clustering with Div_Conq_HDBSCAN 

Figure 33 illustrates the performance of the proposed clustering methodology. It shows the process 
of the first recursion of the semi-supervised clustering, and different clusters are properly 
separated, which can be clearly observed in the figure. Clustering with HDBSCAN also provides 
the labeling of potential outliers present in the dataset, which should be further investigated by 
experts. We have also performed the online detection, where, KNN is applied to the testing dataset 
and results are summarized in Table II of Figure 34. The overall misclassification rate is lower in 
the proposed methodology as compared to the KNN based clustering as shown in Table III of 
Figure 34. 
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Figure 33. Clustering results with HDBSCAN. 

 
 

 
Figure 34. Test confusion matrix of K-Means Clustering (TABLE II) and proposed clustering 

(TABLE III). 
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6. Conclusions 

In this project, the problem of detecting different types of attacks is addressed by developing 
sophistical anomaly detection systems using the machine learning, temporal behavior based, 
historical data correlation and multi-agent-based architectures and methodologies. Based on the 
multitude of vulnerabilities for the existing WAPAC architecture, we have investigated different 
types of attacks. We have described several steps involved in creating and implementing the 
attacks using the experimental setup available at ISU’s PowerCyber testbed. Specifically, we have 
considered single attack vectors which include malicious tripping attack, malware attack, 
generation altering attacks (ramp/pulse) as well as multiple attacks operating in a coordinated 
fashion. 
 
For Wide-Area Protection scheme (WAP), also known as remedial action scheme (RAS), we have 
proposed three different types of anomaly detection systems (ADS): 1) Machine learning based 
ADS, 2) Temporal behavior-based ADS, and 3) Multi-agent based ADS. In machine learning 
based ADS, we showed how the phasor measurement units can be leveraged to develop the 
decision tree-based detection rules for detecting the malicious tripping attack and distinguishing it 
from the normal line tripping during the power system disturbances. We have implemented the 
attacks and then performed the offline and real-time testing in a cyber-physical environment. In 
temporal behavior-based ADS, we have showcased the application of Intrusion Detection System 
(IDS) tools, Snort and Bro, for detecting the generation altering attacks. The detection approach 
was developed for DNP3 protocol, however, it can also be applied to other SCADA based 
protocols. In multi-agent-based ADS, we propose a two-level hierarchical multi-agent based 
architecture which consists of distributed local agents which are periodically monitored by the 
overseer, the central agent. We have proposed the anomaly detection methodology based on 
random measurement updates, inspired by MTD based strategy, to detect the stealthy coordinated 
attacks.  
 
For Wide-Area Control, also known as automatic generation control (AGC), we have discussed 
two types of anomaly detection system: 1) Historical data-based ADS, 2) Machine learning based 
ADS. The main notion of historical data-based ADS is to introduce the redundancy which can 
improve the observability of the system and thus, it helps in detecting the cyber-attacks. In 
historical data-based ADS, we have employed the historical monthly data for creating different 
bounds of ACE for the given frequency range, and during the online testing, we have checked the 
ACE values to detect the anomalies. In machine learning based ADS, we have proposed the semi-
supervised clustering algorithm with Hierarchical Density based Spatial Clustering of Application 
with Noise (HDBSCAN) for detecting different types of attacks. It utilizes cluster entropy to select 
the optimal cut of a cluster dendrogram which helps in the clustering process. Experimental results 
have demonstrated that it has better accuracy than K-means algorithm in identifying different types 
of attacks. 
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